MORAVA K-THEORY OF EXTRASPECIAL 2-GROUPS

BJÖRN SCHUSTER AND NOBUAKI YAGITA

Abstract

We compute the Morava K-theory of some extraspecial 2-groups and associated compact groups.

1. Introduction

Let G be a finite group and $B G$ denote its classifying space. Not that many computations for the Morava K-theory of $B G$ have been carried out, the most notable exception being I. Kriz's article [5] and its successor [6], where he calculates just enough about the 3-primary second Morava K-theory of the 3-Sylow subgroup of $G L_{4}\left(\mathbb{F}_{3}\right)$ to conclude that it cannot be concentrated in even degrees, the first such example known. Other computations can be found in [1], [3], [4], [8], [9], [10], and [11].

In this paper we present a few more calculations concerning extraspecial 2groups. We mainly work with integral Morava K-theory at 2 , which shall be denoted $\tilde{K}(n)$. This is a complex oriented theory with coefficients $\tilde{K}(n)^{*} \cong W \mathbb{F}_{2^{n}}\left[v_{n}, v_{n}^{-1}\right]$, the ring of Laurent polynomials over the Witt ring $W \mathbb{F}_{2^{n}}$, with v_{n} of degree $-2\left(2^{n}-1\right)$. It has a complex orientation x such that the 2 -series of the associated formal group law takes the form $[2](x)=2 x-v_{n} x^{2^{n}}$. Sometimes we switch to the $\bmod 2$ reduction $K(n)$.

In Section 2 we describe the groups we want to study and recall Quillen's computation of their mod 2 cohomology. As a corollary we consider a slight modification serving as motivation for our calculational approach. Section 3 contains the main technical result, Lemma 3.1, which under favourable circumstances computes the spectral sequence of an extension of $\mathbb{Z} / 2 \times \mathbb{Z} / 2$ by a "good" group in the sense of Hopkins-Kuhn-Ravenel, i.e., whose Morava K-theory is generated by transfers of Euler classes. The next two sections contain applications to extraspecials of order 8 and 32. Section 4 is a rehash of the already known computations for D_{8} and Q_{8} and serves mainly to set up notation for the next section, where we deal with the central products $D_{8} \circ D_{8}$ and $D_{8} \circ Q_{8}$. We need some of the multiplicative structure for D_{8}, and make repeated use of generalized characters à la Hopkins-Kuhn-Ravenel [3]. We also consider the associated compact groups which arise by replacing the centre $\mathbb{Z} / 2$ by the circle group S^{1}. The last section contains calculations of the Euler characteristics of extraspecial groups (for any prime), due also to Brunetti [2]. We omit proofs, since they are now available in [2].

2. Extraspecial 2-Groups

There are three types of (almost) extraspecial 2-groups, the so-called real, complex and quaternion types. These may be described as central products. Let D_{8}

[^0]and Q_{8} denote the dihedral respectively quaternion group of order 8 . The extraspecials of real type have order $2^{2 m+1}$ for some $m>0$ and correspond to m-fold central products of D_{8}, for the quaternion type replace one copy D_{8} with a Q_{8}, whereas the complex type is obtained as the central product of a real extraspecial with a cyclic group of order four.

In this section we try to motivate our subsequent computations, and thus concentrate on the real case only. So let $D(m):=D_{8} \circ \cdots \circ D_{8}$ (m copies); in Hall-Senior notation this group is known as $2_{+}^{1+2 m}$. Its mod 2 cohomology was computed by Quillen [7]: one has a central extension

$$
\begin{equation*}
1 \rightarrow \mathbb{Z} / 2 \longrightarrow D(m) \longrightarrow E \rightarrow 1 \tag{2.1}
\end{equation*}
$$

where $E \cong(\mathbb{Z} / 2)^{2 m}$ is a $2 m$-dimensional vector space over \mathbb{F}_{2}. The Serre spectral sequence associated to this extension takes the form

$$
\begin{equation*}
E_{2}=H^{*}\left(B E ; H^{*}(B \mathbb{Z} / 2)\right) \cong \mathbb{F}_{2}[u] \otimes \mathbb{F}_{2}\left[x_{1}, \ldots, x_{2 m}\right] \tag{2.2}
\end{equation*}
$$

with u and x_{i} in degree one; the extension class is $q:=x_{1} x_{2}+\cdots+x_{2 m-1} x_{2 m}$. Quillen's computation can be summarised as follows:

Theorem 2.1 (Quillen [7]). The only differentials in the spectral sequence (2.2) are $d_{2} u=q, d_{2^{k}+1} u^{2^{k}}=Q_{k-1} q$ for $1 \leq k<m$, where Q_{i} stands for Milnor's primitive operation in the Steenrod algebra. The sequence $\left(q, Q_{0} q, \ldots, Q_{m-2} q\right)$ is regular, $u^{2^{m}}$ is a permanent cycle since it represents the Euler class $w_{2^{m}}$ of the spin representation Δ. Thus

$$
H^{*}\left(D(m) ; \mathbb{F}_{2}\right) \cong \mathbb{F}_{2}\left[w_{2^{m}}\right] \otimes \mathbb{F}_{2}\left[x_{1}, \ldots, x_{2 m}\right] /\left(q, Q_{0} q, \ldots, Q_{m-2} q\right)
$$

The nontrivial Stiefel-Whitney classes of Δ are $w_{2^{m}}$ and $w_{2^{m}-2^{i}}, 0 \leq i \leq m$.
Knowing the result, one can slightly rearrange the computation. $D(m+1)$ contains $D(m)$ as a normal subgroup with quotient $\mathbb{Z} / 2 \times \mathbb{Z} / 2$, i.e., one has an extension

$$
\begin{equation*}
1 \rightarrow D(m) \longrightarrow D(m+1) \longrightarrow V \rightarrow 1 \tag{2.3}
\end{equation*}
$$

with $V \cong \mathbb{Z} / 2 \times \mathbb{Z} / 2$ acting trivially on the kernel. The Serre spectral sequence corresponding to (2.3) has E_{2}-term

$$
\begin{equation*}
E_{2}=H^{*}\left(B V ; H^{*}(B D(m)) \cong \mathbb{F}_{2}\left[x_{2 m+1}, x_{2 m+2}\right] \otimes H^{*}(B D(m))\right. \tag{2.4}
\end{equation*}
$$

Corollary 2.2. The spectral sequence (2.4) collapses on the E_{3}-page. The only non-trivial differential is $d_{2} w_{2^{m}}=x_{2 m+1} x_{2 m+2} \otimes w_{2^{m}-1}$.

Proof. Since the cohomology of extraspecial 2-groups of real type is detected on maximal elementary abelian subgroups, the action of d_{2} can be worked out by looking at the restrictions to those subgroups. Each maximal elementary abelian W is of the form $C \times U$ where C is the centre and U a maximal isotropic subspace of the central quotient E. (Recall from [7] that q may be regarded as a quadratic form on E.) The corresponding extension is of the form

$$
1 \rightarrow C \times U \longrightarrow D_{8} \times U \longrightarrow V \rightarrow 1
$$

and the only differential is $d_{2} u=x_{2 m+1} x_{2 m+2}$. Quillen tells us that Δ restricts to W as $\chi \otimes \operatorname{reg}(U)$, where χ is the non-trivial character of C and $\operatorname{reg}(U)$ the regular
representation of U. Applying the formula expressing $w \cdot(\chi \otimes \operatorname{reg}(U))$ in terms of $w \cdot(\chi)$ and $w \cdot(\operatorname{reg}(U))$ we obtain

$$
w_{i}(\chi \otimes \operatorname{reg}(U))=\sum_{j=0}^{i}\binom{2^{m}-i+j}{j} w_{1}(\chi)^{j} w_{i-j}(\operatorname{reg}(U))
$$

So $w_{2^{m}}$ restricts to $\sum_{k=0}^{m} u^{2^{k}} w_{2^{m}-2^{k}}(r e g(U))$, since other Stiefel-Whitney classes of $\operatorname{reg}(U)$ are zero, and $w_{2^{m}-1}$ to $w_{2^{m}-1}(\operatorname{reg}(U))$. Thus d_{2} is as claimed; the rest follows from a Poincaré series calculation.

Note that $w_{2^{m}}^{2}$ represents the Euler class of the spin representation of $D(m+1)$. Furthermore, there are extension problems in the E_{∞}-term. Let $q_{m}=x_{1} x_{2}+$ $\cdots+x_{2 m-1} x_{2 m}$ denote the extension class of $D(m)$, then q_{m} drops in filtration to $x_{2 m+1} x_{2 m+2}$ (so we get the relation $q_{m+1}=0$), and the other relations follow as solutions to extension problems related to $Q_{i} q_{m}=0$ and $x_{2 m+1} x_{2 m+2} w_{2^{m}-1}=0$.

The (additive) simplicity of the spectral sequence of this extension is what lets us believe it to be possible to emulate this computation in Morava K-theory. In the subsequent sections we shall try to prove that the Atiyah-Hirzebruch-Serre spectral sequence of (2.3) behaves analogously, meaning it has only two differentials (the second being $v_{n} \otimes Q_{n}$, see below).

3. Spectral sequence calculations

In this section we consider the Atiyah-Hirzebruch-Serre spectral sequence associated to extensions

$$
1 \rightarrow G^{\prime} \rightarrow G \rightarrow V \rightarrow 0
$$

with $V \cong \mathbb{Z} / 2 \times \mathbb{Z} / 2$, acting trivially on G^{\prime}. The spectral sequence has E_{2}-term

$$
\begin{equation*}
E_{2}^{*, *}=H^{*}\left(\mathbb{Z} / 2 \otimes \mathbb{Z} / 2 ; \tilde{K}(n)^{*}\left(B G^{\prime}\right)\right) \Longrightarrow \tilde{K}(n)^{*}(B G) \tag{3.1}
\end{equation*}
$$

Lemma 3.1. Let G be as above. Suppose $K(n)^{\text {odd }}\left(B G^{\prime}\right)=0$ for all $n \geq 1$, and moreover that all elements in $E_{4}^{0, *}$ are permanent cycles. Then $\tilde{K}(n)^{\text {odd }}(B G)=0$ and $\tilde{K}(n)^{*}(B G)$ has no p-torsion, and $K(n)^{\text {odd }}(B G)=0$.

Proof. $K(n)^{\text {odd }}\left(B G^{\prime}\right)=0$ implies $\tilde{K}(n)^{\text {odd }}\left(B G^{\prime}\right)=0$ and $\tilde{K}(n)^{*}\left(B G^{\prime}\right)$ is p-torsion free. One has $H^{*}\left(B V ; \mathbb{F}_{2}\right) \cong \mathbb{F}_{2}\left[x_{1}, x_{2}\right]$; setting $y_{i}=x_{i}^{2}$ and $\alpha=x_{1}^{2} x_{2}+x_{1} x_{2}^{2}$, the E_{2}-page of the spectral sequence is

$$
E_{2}^{*, *^{\prime}} \cong \begin{cases}\tilde{K}(n)^{*}\left(B G^{\prime}\right) & \text { for } *=0 \\ \tilde{K}(n)^{*}\left(B G^{\prime}\right) \otimes \mathbb{F}_{2}\left[y_{1}, y_{2}, \alpha\right] /\left(\alpha^{2}=y_{1}^{2} y_{2}+y_{1} y_{2}^{2}\right) & \text { for } *>0\end{cases}
$$

We shall write π for the element $y_{1}^{2} y_{2}+y_{1} y_{2}^{2}$. The first potentially non-trivial differential is d_{3}. Any even (respectively odd) degree element in $E_{2}^{*, *}$ is of the form $x \otimes f(x \otimes f \alpha)$ for some $x \in \tilde{K}(n)^{*}\left(B G^{\prime}\right)$ and $f \in \mathbb{F}_{2}\left[y_{1}, y_{2}\right]$. We shall first consider the case $n \geq 2$, the argument for $n=1$ being similar (see the remark at the end). Note that d_{3} is zero on any element of $\mathbb{F}_{2}\left[y_{1}, y_{2}, \alpha\right] /\left(\alpha^{2}=y_{1}^{2} y_{2}+y_{1} y_{2}^{2}\right)$ by comparison to the Atiyah-Hirzebruch spectral sequence for V and $n \geq 2$. Hence $d_{3}(x \otimes f)=x^{\prime} \otimes f \alpha$ and $d_{3}(x \otimes f \alpha)=x^{\prime} \otimes f \pi$ for some $x^{\prime} \in K(n)^{*}\left(B G^{\prime}\right)$. Thus we obtain additive isomorphisms

$$
\begin{cases}E_{4}^{0, *} & \cong \tilde{K} \\ E_{4}^{>0, *} & \cong K \otimes \mathbb{F}_{2}\left[y_{1}, y_{2}\right] /(\pi) \oplus H \otimes \mathbb{F}_{2}\left[y_{1}, y_{2}\right]\{\alpha, \pi\}\end{cases}
$$

where $\tilde{K}=\operatorname{Ker}\left(\left.d_{3}\right|_{\tilde{K}(n)^{*}\left(B G^{\prime}\right)}\right), K=\operatorname{Ker}\left(\left.d_{3}\right|_{K(n)^{*}\left(B G^{\prime}\right)}\right)=\tilde{K} /\left(\tilde{K} \cap 2 E_{2}^{0, *}\right)$, and $H=H\left(K(n)^{*}\left(B G^{\prime}\right) ; d_{3} \otimes \alpha^{-1}\right)$. As $\tilde{K}(n)^{*}$-algebra, the E_{4}-page is generated by α, y_{i}, and the generators in \tilde{K}. By hypothesis, all but α are permanent cycles, so the next non-zero differential is

$$
d_{2^{n+1}-1}(\alpha)=v_{n} \otimes Q_{n} \alpha=v_{n} \otimes\left(y_{1}^{2^{n}} y_{2}+y_{1} y_{2}^{2^{n}}\right)=v_{n} \otimes q \pi
$$

where $q=\left(y_{1}^{2^{n}} y_{2}+y_{1} y_{2}^{2^{n}}\right) / \pi=\left(y_{1}^{2^{n}-2}+y_{1}^{2^{n}-3} y_{2}+\cdots+y_{2}^{2^{n}-2}\right)$. Thus we get

$$
\begin{aligned}
& E_{2^{n+1}}^{0, *} \cong \tilde{K} \\
& E_{2^{n+1}}^{>0, *} \cong K \otimes \mathbb{F}_{2}\left[y_{1}, y_{2}\right] /(\pi) \oplus H \otimes \mathbb{F}_{2}\left[y_{1}, y_{2}\right] /(q)\{\pi\}
\end{aligned}
$$

This is concentrated in even degrees, whence $E_{2^{n+1}} \cong E_{\infty}$ and $\tilde{K}(n)^{\text {odd }}(B G)=0$. It remains to prove that $\tilde{K}(n)^{*}(B G)$ has no 2-torsion. Let $0 \neq x \in \tilde{K}(n)^{*}(B G)$. Represent x by $x^{\prime} \in E_{\infty}$. If $x^{\prime} \in E_{\infty}^{0, *}$ then it cannot be 2-torsion, since $\tilde{K}(n)^{*}\left(B G^{\prime}\right)$ is 2 -torsion free. If x^{\prime} is in $K \otimes \mathbb{F}_{2}\left[y_{1}, y_{2}\right] /(\pi)$, we may write $x^{\prime}=\sum \bar{x} \otimes f$ with $\bar{x} \in K, f \in \mathbb{F}_{2}\left[y_{1}, y_{2}\right] /(\pi)$. Rewrite f as $y_{1} f_{1}+\lambda y_{2}^{s}, \lambda \in \mathbb{F}_{2}$. Since $2 y_{i}=v_{n} y_{i}^{2^{n}}$ in $\tilde{K}(n)^{*}(B G)$ (this is immediate from the calculation for cyclic groups), $2 x$ can be represented by

$$
(2 x)^{\prime}=\sum v_{n} \bar{x} \otimes\left(y_{1}^{2^{n}} f_{1}+\lambda y_{2}^{2^{n}+s-1}\right) .
$$

We claim that the right hand side of this expression is non-zero: if $\lambda \neq 0$, it does not lie in the ideal $\left(y_{1} y_{2}\right) \supset(\pi)$, and if $\lambda=0$, then $y_{1}^{2^{n}} f \in(\pi)$ implies $y_{1} f \in(\pi)$. Lastly suppose $x^{\prime} \in H \otimes \mathbb{F}_{2}\left[y_{1}, y_{2}\right] /\left(y_{1}^{2^{n}-2}+\cdots+y_{2}^{2^{n}-2}\right)\{\pi\} \subset H \otimes \mathbb{F}_{2}\left[y_{1}, y_{2}\right] /\left(Q_{n} \alpha\right)$. Write $x^{\prime}=\sum \bar{x} \otimes f \pi$ and $f \pi=y_{1} f_{1}$. Then $(2 x)^{\prime} \neq 0$ if $v_{n} \otimes f_{1} y_{1}^{2^{n}} \neq 0$. But $f_{1} y_{1}^{2^{n}} \in\left(Q_{n} \alpha\right)$ implies $f_{1} y_{1} \in\left(Q_{n} \alpha\right)$: tensoring up with the finite field of 2^{n} elements $\mathbb{F}_{2^{n}}$ yields

$$
Q_{n} \alpha=y_{1}^{2^{n}} y_{2}+y_{1} y_{2}^{2^{n}}=\prod_{\mu \in \mathbb{F}_{2^{n}}}\left(y_{1}+\mu y_{2}\right)
$$

Finally, for $n=1$ the differntial d_{3} is given by $v_{1} \pi$; the claim follows by filtering $E_{2}^{*, *}$ by powers of π and setting $q=1$.

Since \tilde{K} is 2 -torsion free and the map defined by

$$
a y_{1}^{i} \mapsto a y_{1}^{i+2^{n}-1} \quad \text { and } \quad y_{2}^{i} \mapsto y_{2}^{i+2^{n}-1}
$$

on $E_{\infty}^{>0, *}$ is injective, one easily sees
Corollary 3.2. Suppose G is as in Lemma 3.1. Then there is an additive isomorphism

$$
\begin{aligned}
K(n)^{*}(B G) \cong & E_{\infty}^{0, *} / 2 \oplus E_{\infty}^{>0, *} /\left(y_{1}^{2^{n}}, y_{2}^{2^{n}}\right) \\
\cong & \tilde{K} / 2 \oplus K \otimes \mathbb{Z} / 2\left[y_{1}, y_{2}\right]^{+} /\left(y_{1}^{2^{n}}, y_{2}^{2^{n}}, \pi\right) \\
& \oplus H \otimes \mathbb{Z} / 2\left[y_{1}, y_{2}\right] /\left(y_{1}^{2^{n}-1}, y_{2}^{2^{n}-1}, q\right)\{\pi\}
\end{aligned}
$$

4. The cases D_{8} and Q_{8}

The groups D_{8} and Q_{8} have presentations

$$
\begin{aligned}
D_{8} & =\left\langle a_{1}, a \mid a_{1}^{2}=a^{4}=1,\left[a_{1}, a\right]=a^{2}\right\rangle \\
Q_{8} & =\left\langle a_{1}, a_{2} \mid a_{1}^{4}=a_{2}^{4}=1,\left[a_{1}, a_{2}\right]=a_{1}^{2}=a_{2}^{2}\right\rangle,
\end{aligned}
$$

respectively. Thus there are central extensions of the form $\mathbb{Z} / 2 \rightarrow G \rightarrow V$ for G either D_{8} or Q_{8}, i.e., we have $G^{\prime}=\mathbb{Z} / 2$ in the setup of Section 3. Setting $a_{2}=a a_{1}$ in the case of D_{8}, the quotient V is generated by the cosets \bar{a}_{i} for either group; let
$x_{i} \in H^{*}\left(B V ; \mathbb{F}_{2}\right)$ be dual to \bar{a}_{i}. Recall that $\tilde{K}(n)^{*}(B \mathbb{Z} / 2) \cong \tilde{K}(n)^{*}[u] /\left(2 u-v_{n} u^{2^{n}}\right)$ where u is the Euler class of the non-trivial linear character η of $\mathbb{Z} / 2$. In the spectral sequence (3.1), we get $d_{3} u=\alpha$. Hence $H=\operatorname{Ker}\left(d_{3}\right) / \operatorname{Im}\left(d_{3} \otimes \alpha^{-1}\right)=0$, and u^{2} is a permanent cycle, since it is the restriction of the Euler class of the irreducible two-dimensional complex representation ρ of G to the fibre. Thus

$$
\begin{aligned}
E_{\infty}^{0, *} & \cong \tilde{K}(n)^{*}\left[u^{2}\right] /\left(\left(2 u-v_{n} u^{2^{n}}\right) \cap \tilde{K}(n)^{*}\left[u^{2}\right]\right) \cong \tilde{K}(n)^{*}\left[u^{2}\right]\{1,2 u\} \\
E_{\infty}^{>0, *} & \cong \tilde{K}(n)^{*}\left[u^{2}\right] /\left(v_{n} u^{2^{n}}\right) \otimes \mathbb{F}_{2}\left[y_{1}, y_{2}\right] /(\pi)
\end{aligned}
$$

It follows that $\tilde{K}(n)^{*}(B G)$ is concentrated in even degrees and has no 2-torsion, whence $K(n)^{*}(B G) \cong \tilde{K}(n)^{*}(B G) /(2)$. Choosing an element $\bar{c}_{2} \in \tilde{K}(n)^{*}(B G)$ represented by u^{2}, one obtains

Theorem $4.1([9],[8])$. Let G be either D_{8} or Q_{8}. Then there is an additive isomorphism

$$
K(n)^{*}(B G) \cong\left(K(n)^{*}\left\{\bar{c}_{1}\right\} \oplus K(n)^{*}\left[y_{1}, y_{2}\right] /\left(\pi, y_{1}^{2^{n}}, y_{2}^{2^{n}}\right)\right)\left[\bar{c}_{2}\right] /\left(\bar{c}_{2}^{2^{n-1}}\right)
$$

The multiplicative structure is given by

$$
\begin{equation*}
\bar{c}_{1} y_{1}=y_{1}^{2}, \quad \bar{c}_{1} y_{2}=y_{2}^{2}, \quad \bar{c}_{1}^{2}=y_{1}^{2}+y_{1} y_{2}+y_{2}^{2} \tag{4.1}
\end{equation*}
$$

identifying $\bar{c}_{1}=v_{n} \bar{c}_{2}^{n-1}+y_{1}+y_{2}$ for D_{8} and $\bar{c}_{1}=v_{n} \bar{c}_{2}^{n-1}$ for Q_{8}.
The generators y_{i} can be identified with the Euler classes of the representations $\rho_{i}: G \rightarrow V \rightarrow\left\langle\bar{a}_{i}\right\rangle \xrightarrow{\eta} \mathbb{C}^{*}$. Switching from \bar{c}_{i} to $c_{i}=c_{i}(\rho)$, we may write $c_{2}=\bar{c}_{2}$ $\bmod \left(y_{1}, y_{2}\right)^{2}$. Then $v_{n} c_{2}^{2^{n-1}}=v_{n} \bar{c}_{2}^{2^{n-1}} \bmod \left(y_{1}, y_{2}\right)^{2^{n}}$. We also have $c_{1}=\bar{c}_{1}$ $\bmod \left(y_{1}, y_{2}\right)^{2}$, by considering restrictions to maximal abelian subgroups, see below. Hence relation (4.1) in the theorem holds modulo $\left(y_{1}, y_{2}\right)^{3}$ with \bar{c}_{i} replaced by c_{i}.

We want to compute the restrictions of c_{2} to the maximal subgroups of G. Consider $G=D_{8}$ first. Let $C=\left\langle a^{2}\right\rangle$ be the centre of D_{8}, and $A_{i}=\left\langle a_{i}\right\rangle$. The maximal subgroups are $A=\langle a\rangle \cong \mathbb{Z} / 4$ and $C \times A_{i} \cong \mathbb{Z} / 2 \times \mathbb{Z} / 2$. Let $\rho_{A}: A \rightarrow \mathbb{C}^{*}$ be a faithful representation of A. Then $c_{1}\left(\rho_{A}\right)$ restricts to the generator u of the centre, and identifying classes with their images under restriction, we may write

$$
\begin{aligned}
K(n)^{*}(B A) & \cong K(n)^{*}[u] /[4](u) \cong K(n)^{*}[u] /\left(u^{4^{n}}\right) \\
K(n)^{*}\left(B C \times A_{i}\right) & \cong K(n)^{*}\left[u, y_{i}\right] /\left([2](u),[2]\left(y_{i}\right)\right) \cong K(n)^{*}\left[u, y_{i}\right] /\left(u^{2^{n}}, y_{i}^{2^{n}}\right) .
\end{aligned}
$$

We have $\operatorname{Res}_{A}\left(\rho_{i}\right)=\rho_{A} \otimes \rho_{A}$, and since $\rho=\operatorname{Ind}_{A}^{G}\left(\rho_{A}\right)$, the double coset formula gives $\operatorname{Res}_{A}(\rho)=\rho_{A} \oplus \rho_{A}^{-1}$. The restrictions of the total Chern class are $\operatorname{Res}_{A}(c(\rho))=$ $(1+u)(1+[-1] u)$ and $\operatorname{Res}_{C \times A_{i}}(c(\rho))=(1+u)\left(1+u+_{K(n)} y_{i}\right)$. Thus we obtain the following restrictions:

$$
\begin{align*}
& \operatorname{Res}_{A}\left(c_{2}\right)=([-1](u)) u=u^{2}+v_{n} u^{2^{n}+1} \quad \bmod \left(u^{2^{n+1}}\right) ; \tag{4.2}\\
& \operatorname{Res}_{A}\left(c_{1}\right)=\operatorname{Res}_{A}\left(y_{i}\right)=[2](u)=v_{n} u^{2^{n}} \tag{4.3}
\end{align*}
$$

Similarly, we get

$$
\begin{align*}
& \operatorname{Res}_{C \times A_{i}}\left(c_{2}\right)=u\left(u+_{K(n)} y_{i}\right)=u^{2}+u y_{i}+v_{n} u^{2^{n-1}+1} y_{i}^{2^{n-1}} ; \tag{4.4}\\
& \operatorname{Res}_{C \times A_{i}}\left(c_{1}\right)=u+\left(u+_{K(n)} y_{i}\right)=y_{i}+v_{n} u^{2^{n-1}} y_{i}^{2^{n-1}} . \tag{4.5}
\end{align*}
$$

Next consider the quaternion case. Here the maximal subgroups are $B_{1}=\left\langle a_{1}\right\rangle$, $B_{2}=\left\langle a_{2}\right\rangle$, and $B_{3}=\left\langle a_{1} a_{2}\right\rangle$, all isomorphic to $\mathbb{Z} / 4$. If $e_{i}: B_{i} \rightarrow \mathbb{C}^{*}$ is a faithful
representation, we have $\rho \cong \operatorname{Ind}_{B_{i}}^{Q_{8}}\left(e_{i}\right)$ for each B_{i}, and similar to above we can see (4.6) $\operatorname{Res}_{B_{i}}\left(c_{2}\right)=u_{i}^{2}+v_{n} u_{i}^{2^{n}+1} \bmod \left(u^{2^{n+1}}\right)$ in $K(n)^{*}\left(B B_{i}\right) \cong K(n)^{*}\left[u_{i}\right] /\left(u_{i}^{4^{n}}\right)$.

To finish this section, we consider a compact group defined by Q_{8} or D_{8}. When a group G has centre $C \cong \mathbb{Z} / 2$, let us write \tilde{G} for the central product $G \times_{C} S^{1}$, identifying C with $\{1,-1\} \subset S^{1}$. Then $\tilde{D}_{8} \cong \tilde{Q}_{8}$. Using Lemma 3.1, we easily see:

Theorem 4.2. There is an additive isomorphism

$$
K(n)^{*}\left(B \tilde{D}_{8}\right) \cong\left(K(n)^{*}\left\{\bar{c}_{1}\right\} \oplus K(n)^{*}\left[y_{1}, y_{2}\right] /\left(\pi, y_{1}^{2^{n}}, y_{2}^{2^{n}}\right)\right)\left[\bar{c}_{2}\right] .
$$

The multiplicative structure is given by (4.1) $\bmod \left(y_{1}, y_{2}\right)^{3}$ in Theorem 4.1.

5. Extraspecial groups of order 2^{5}

In this section we consider the central products $G=D_{8} \circ D_{8}$ and $G=D_{8} \circ Q_{8}$. In both cases, G is generated by elements a_{1}, \ldots, a_{4} of order 2 , and we have an extension

$$
\begin{equation*}
1 \rightarrow G^{\prime} \rightarrow G \rightarrow V \rightarrow 0 \quad \text { with } \quad G^{\prime} \cong D_{8}, V \cong \mathbb{Z} / 2 \times \mathbb{Z} / 2 \tag{5.1}
\end{equation*}
$$

and trivial V-action on G^{\prime}. Set $G_{i j}=\left\langle a_{i}, a_{j}\right\rangle \subset G$, numbering the generators a_{i} such that $G^{\prime}=G_{12}$, and $A_{i}=\left\langle a_{i}\right\rangle$. Then $G_{34} \cong D_{8}$ or Q_{8}, and $G_{34} / C=V$ for $C=$ centre of G. This allows us to keep the notation for $K(n)^{*}\left(B D_{8}\right)$ from the previous section. Furthermore, let $H^{*}\left(B V ; \mathbb{F}_{2}\right)=\mathbb{F}_{2}\left[x_{3}, x_{4}\right]$, and $y_{3}, y_{4}, \alpha \in$ $H^{*}(B V)$ correspond to x_{3}^{2}, x_{4}^{2}, and $x_{3}^{2} x_{4}+x_{3} x_{4}^{2}$, respectively. We consider the spectral sequence

$$
\begin{equation*}
E_{2}^{*, *}=H^{*}\left(B V ; \tilde{K}(n)^{*}\left(B D_{8}\right)\right) \Longrightarrow \tilde{K}(n)^{*}(B G) \tag{5.2}
\end{equation*}
$$

Lemma 5.1. In the above spectral sequence, we have

$$
d_{3} c_{2}=c_{1} \otimes \alpha \quad \bmod \left(y_{1}, y_{2}\right)^{2}
$$

Proof. For dimensional reasons, $d_{3} c_{2}=\left(\lambda_{1} y_{1}+\lambda_{2} y_{2}+\lambda_{3} c_{1}\right) \otimes \alpha \bmod \left(y_{1}, y_{2}\right)^{2}$ with $\lambda_{i} \in \mathbb{F}_{2}$. Consider the map of spectral sequences induced by

Since $\operatorname{Res}_{A_{1} \times C}\left(c_{2}\right)=u^{2}+u y_{1} \bmod \left(y_{1}^{2}\right)$ and $d_{3} u=1 \otimes \alpha$, we get

$$
i^{*}\left(d_{3} c_{2}\right)=d_{3}\left(u^{2}+u y_{1}\right)=y_{1} \otimes \alpha \quad \bmod \left(y_{1}^{2}\right)
$$

and hence $\lambda_{1}+\lambda_{3}=1$. Similarly, replacing A_{1} with A_{2}, we get $\lambda_{2}+\lambda_{3}=1$. Finally, consider the inclusion of A into G_{12} :

Now modulo $u^{2^{n+1}}$, we have $\operatorname{Res}_{A}\left(c_{2}\right)=u^{2}+v_{n} u^{2^{n}+1}$ and thus $j^{*}\left(d_{3} c_{2}\right)=v_{n} u^{2^{n}} \otimes \alpha$. Since $\operatorname{Res}_{A}\left(c_{1}\right)=v_{n}\left(\operatorname{Res}_{A}\left(c_{2}\right)\right)^{2^{n-1}}=v_{n} u^{2^{n}}$, we get $\lambda_{1}+\lambda_{2}+\lambda_{3}=1$, too.

Therefore Theorem 4.1 gives

$$
\begin{aligned}
& d_{3}\left(y_{i} c_{2}\right)=y_{i} c_{1} \otimes \alpha=y_{1}^{2} \otimes \alpha \quad \bmod \left(y_{1}, y_{2}\right)^{3} \\
& d_{3}\left(c_{1} c_{2}\right)=c_{1}^{2} \otimes \alpha=y_{1} y_{2} \otimes \alpha \quad \bmod \left(y_{1}, y_{2}\right)^{3} .
\end{aligned}
$$

Using these formulae, it is easy to see that $\tilde{K}=\operatorname{Ker}\left(\left.d_{3}\right|_{\tilde{K}(n)^{*}\left(B D_{8}\right)}\right)$ is generated as $K(n)^{*}$-algebra by

$$
\begin{align*}
& y_{1}, y_{2}, c_{2}^{2}\left(\text { which gives } c_{1}\right), 2 c_{2} \\
& b_{1}=y_{1}^{2^{n^{-}}-1} c_{2}, b_{2}=y_{2}^{2^{n}-1} c_{2}, y_{1} b_{2}=y_{1} y_{2}^{2^{n}-1} c_{2} \tag{5.3}
\end{align*}
$$

The last three terms are in \tilde{K} since $v_{n} y_{i}^{2^{n}}=0$ in $K(n)^{*}\left(B D_{8}\right)$. More precisely, we have

Lemma 5.2. In the spectral sequence (5.2), the kernel \tilde{K} and the homology H with respect to $d_{3} \otimes \alpha^{-1}$ are given additively by

$$
\begin{aligned}
& \tilde{K} \cong\binom{\left(\tilde{K}(n)^{*}\left[y_{1}, y_{2}\right] /\left(\tilde{\pi},[2]\left(y_{i}\right)\right) \oplus \tilde{K}(n)^{*}\left\{c_{1}\right\}\right)\left\{1,2 c_{2}\right\}}{+\tilde{K}(n)^{*}\left\{b_{1}, b_{2}, y_{1} b_{2}\right\}}\left[c_{2}^{2}\right] /\left(c_{2}^{2^{n-1}}\right) \\
& H \cong K(n)^{*}\left\{1, y_{1}, y_{2}, b_{1}, b_{2}, y_{1} b_{2}\right\}\left[c_{2}^{2}\right] /\left(c_{2}^{2^{n-1}}\right)
\end{aligned}
$$

where $\tilde{\pi}=y_{1} y_{2}\left(y_{1}+_{\tilde{K}(n)} y_{2}\right)$. Note that $2 b_{i}=2 c_{2} y_{i}^{2^{n}-1}$.
A similar statement holds for the associated compact group:
Lemma 5.3. In the spectral sequence $1 \rightarrow \tilde{G}^{\prime} \rightarrow \tilde{G} \rightarrow V \rightarrow 1$, the kernel \tilde{K} and the homology H are given additively by

$$
\begin{aligned}
\tilde{K} & \left.\cong\left(\tilde{K}(n)^{*}\left[y_{1}, y_{2}\right] /\left(\tilde{\pi},[2]\left(y_{i}\right)\right) \oplus \tilde{K}(n)^{*}\left\{c_{1}\right\}\right)\left\{1,2 c_{2}\right\}\right)\left[c_{2}^{2}\right] \\
H & \cong K(n)^{*}\left\{1, y_{1}, y_{2}\right\}\left[c_{2}^{2}\right] .
\end{aligned}
$$

We want to show that all elements in \tilde{K} are permanent. Let $t=\operatorname{Tr}_{G_{12} \times A_{3}}^{G}\left(c_{2} \otimes 1\right)$. By the double coset formula, we get

$$
\operatorname{Res}_{G_{12}}^{G}(t)=\sum_{g \in G_{12} \backslash G / G_{12} \times A_{3}} \operatorname{Tr}_{G_{12} \cap\left(G_{12} \times A_{3}\right)^{g}}^{G_{12}} \operatorname{Res}_{G_{12} \cap\left(G_{12} \times A_{3}\right)^{g}}^{\left(G_{12} \times A_{3}\right)^{g}} g^{*}\left(c_{2} \otimes 1\right) .
$$

Here $G_{12} \backslash G / G_{12} \times A_{3} \cong A_{4}$ and $G_{12} \cap\left(G_{12} \times A_{3}\right)^{g}=G_{12}$ for all $g \in A_{4}$. Hence

$$
\operatorname{Res}_{G_{12}}^{G}(t)=c_{2}+a_{4}^{*} c_{2}=2 c_{2} .
$$

Therefore $t \in \tilde{K}(n)^{*}(B G)$ corresponds to the element $\left[2 c_{2}\right] \in E_{\infty}^{0, *}$.
Next we look for elements corresponding to the b_{i} of Lemma 5.2. Let $A^{\prime}=\left\langle a_{3} a_{4}\right\rangle$; this is cyclic of order 4 . Let $\rho_{A^{\prime}}^{\prime}$ be a faithful one-dimensional representation of A^{\prime}. Set $\rho^{\prime}=\operatorname{Ind}_{A^{\prime}}^{G_{34}}\left(\rho_{A^{\prime}}\right)$ and $c_{2}^{\prime}=c_{2}\left(\rho^{\prime}\right)$. Define $t_{i}=\operatorname{Tr}_{G_{34} \times A_{i}}^{G}\left(c_{2}^{\prime} \otimes 1\right)$ for $i=1,2$. We claim the following identities:

$$
\begin{align*}
v_{n} b_{1} & =\operatorname{Res}_{G_{12}}^{G}\left(t-t_{2}+y_{2}^{2}-y_{1} y_{2}\right) \tag{5.4}\\
v_{n} b_{2} & =\operatorname{Res}_{G_{12}}^{G}\left(t-t_{1}+y_{1}^{2}-y_{1} y_{2}\right) \tag{5.5}
\end{align*}
$$

It suffices to check them on the abelian subgroups of G_{12}, by [3]. Thus we need to compute the restrictions to $C \times A_{i}$ and A. Since ρ restricts to $\eta+\eta \lambda_{i}$ on $C \times A_{i}$
and to $\rho_{A}+\rho_{A}^{3}$ on A, we have

$$
\begin{array}{ll}
\operatorname{Res}_{C \times A_{i}}^{G}(t)=2 u\left(u+_{\tilde{K}(n)} y_{i}\right) & \operatorname{Res}_{A}^{G}(t)=2 z[3](z) \\
\operatorname{Res}_{C \times A_{1}}^{G_{12}}\left(b_{1}\right)=u\left(u+_{\tilde{K}(n)} y_{1}\right) y_{1}^{2^{n}-1} & \operatorname{Res}_{A}^{G_{12}}\left(b_{i}\right)=z[3](z)([2] z)^{2^{n}-1} \\
\operatorname{Res}_{C \times A_{2}}^{G_{12}}\left(b_{1}\right)=0 &
\end{array}
$$

Here $z=c_{1}\left(\rho_{A}\right)$ denotes the generator of $\tilde{K}(n)^{*}(B A) \cong \tilde{K}(n)^{*}[[z]] /[4](z)$; clearly y_{1}, y_{2} restrict to $[2](z)$.
Now $C \times A_{1} \backslash G / G_{34} \times A_{2} \cong 1$ and $\left(C \times A_{1}\right) \cap\left(G_{34} \times A_{2}\right)=C$; the double coset formula then says

$$
\begin{aligned}
\operatorname{Res}_{C \times A_{1}}^{G}\left(t_{2}\right) & =\operatorname{Tr}_{C}^{C \times A_{1}} \operatorname{Res}_{C}^{\left.G_{34} \times A_{2}\right)}\left(c_{2}^{\prime} \otimes 1\right)=\operatorname{Tr}_{C}^{C \times A_{1}}\left(u^{2}\right) \\
& =u^{2} \operatorname{Tr}_{\{1\}}^{A_{1}}(1)=u^{2}\left(2-v_{n} y_{1}^{2^{n}-1}\right)
\end{aligned}
$$

where we used the fact (see e.g. [3] or [5])

$$
\begin{equation*}
\operatorname{Tr}_{\{1\}}^{A_{1}}(1)=\frac{[2]\left(y_{1}\right)}{y_{1}}=2-v_{n} y_{1}^{2^{n}-1} \tag{5.6}
\end{equation*}
$$

Similarly, we have $C \times A_{2} \backslash G / G_{34} \times A_{2} \cong A_{1}$ and $\left(C \times A_{2}\right) \cap\left(G_{34} \times A_{2}\right)=C \times A_{2}$, whence

$$
\begin{aligned}
\operatorname{Res}_{C \times A_{2}}^{G}\left(t_{2}\right) & =\operatorname{Res}_{C \times A_{2}}^{G_{34} \times A_{2}}\left(1+a_{1}^{*}\right)\left(c_{2}^{\prime} \otimes 1\right) \\
& =c_{2}(2 \eta)+c_{2}\left(\eta \otimes \lambda_{2}\right)=u^{2}+\left(u+_{\tilde{K}(n)} y_{2}\right)^{2}
\end{aligned}
$$

By the double coset formula again

$$
\operatorname{Res}_{A}^{G}\left(t_{i}\right)=\operatorname{Tr}_{C}^{A}\left(u^{2}\right)=z^{2} \operatorname{Tr}_{C}^{A}(1)=z^{2} \frac{[4](z)}{[2](z)}
$$

Thus
$\operatorname{Res}_{C \times A_{1}}^{G}\left(t-t_{2}+y_{2}^{2}-y_{1} y_{2}\right)-\operatorname{Res}_{C \times A_{1}}^{G_{12}}\left(v_{n} b_{1}\right)=\left(u\left(u+_{\tilde{K}(n)} y_{1}\right)-u^{2}\right)\left(2-v_{n} y_{1}^{2^{n}-1}\right)$.
Let χ be a generalized character of $C \times A_{1}$. If $\chi\left(y_{1}\right)=0$, then

$$
\chi\left(\left(u\left(u+_{\tilde{K}(n)} y_{1}\right)-u^{2}\right)\left(2-v_{n} y_{1}^{2^{n}-1}\right)\right)=2\left(\chi(u)^{2}-\chi(u)^{2}\right)=0
$$

whereas if $\chi\left(y_{1}\right) \neq 0$, then $\chi\left(2-v_{n} y_{1}^{2^{n}-1}\right)=[2]\left(\chi\left(y_{1}\right)\right) / \chi\left(y_{1}\right)=0$. Secondly,
$\operatorname{Res}_{C \times A_{2}}^{G}\left(t-t_{2}+y_{2}^{2}-y_{1} y_{2}\right)-\operatorname{Res}_{C \times A_{2}}^{G_{12}}\left(v_{n} b_{1}\right)=2 u\left(u+\tilde{K}_{(n)} y_{2}\right)-\left(u+{ }_{\tilde{K}(n)} y_{2}\right)^{2}-u^{2}+y_{2}^{2}$.
Any generalized character χ with $\chi(u)=0$ or $\chi\left(y_{2}\right)=0$ clearly annihilates this expression, so assume without loss of generality that $\chi(u)=\pi$, where π is a uniformizing element. Any other nonzero root of the 2-series is of the form $\zeta \pi$ for a $\left(2^{n}-1\right)$-st root of unity ζ. Then $[\zeta](\pi)=\zeta \pi$, and $\pi+_{\tilde{K}(n)} \zeta \pi=\pi+{ }_{\tilde{K}(n)}[\zeta](\pi)=$ $[1+\zeta](\pi)=(1+\zeta) \pi$, since $(1+\zeta)^{2^{n}-1} \equiv 1 \bmod 2$. Thus $\left.\chi\left(2 u\left(u+_{\tilde{K}(n)} y_{2}\right)-\left(u+_{\tilde{K}(n)} y_{2}\right)^{2}-u^{2}+y_{2}^{2}\right)\right)=2 \pi(1+\zeta) \pi-(1+\zeta)^{2} \pi^{2}-\pi^{2}+\zeta^{2} \pi^{2}=0$.
Finally,

$$
\begin{aligned}
& \operatorname{Res}_{A}^{G}\left(t-t_{2}+y_{2}^{2}-y_{1} y_{2}\right)-\operatorname{Res}_{A}^{G_{12}}\left(v_{n} b_{1}\right)= \\
& \quad=2 z[3](z)-z^{2} \frac{[4](z)}{[2](z)}-v_{n} z[3](z)([2](z))^{2^{n}-1}=\left(z[3](z)-z^{2}\right) \frac{[4](z)}{[2](z)}
\end{aligned}
$$

where we used $v_{n}([2](z))^{2^{n}-1}=2-[4](z) /[2](z)$. Let α denote the value of a character on z, then either $[4](\alpha) /[2](\alpha)=0$, if $[2](\alpha) \neq 0$, or $[4](\alpha) /[2](\alpha)=2$, if
$[2](\alpha)=0$, and in that case $\alpha[3](\alpha)-\alpha^{2}=\alpha\left(\alpha+_{\tilde{K}(n)}[2](\alpha)\right)-\alpha^{2}=\alpha^{2}-\alpha^{2}=0$. This finishes the proof of equation (5.4), the other one follows by exchanging the indices 1 and 2. Thus the assumptions of lemma (3.1) hold, yielding

Theorem 5.4. Let G be an extraspecial group of order 32. Then $K(n)^{*}(B G)$ is concentrated in even degrees, and generated by transfers of Euler classes.

In the compact case it suffices to show that c_{1} is a permanent cycle. Suppose that $d_{r} c_{1}=x \otimes f \alpha \neq 0$ for $3 \leq r \leq 2^{n+1}-1$. Note that $x \otimes f \alpha^{2}=x \otimes f \pi \neq 0$ in $E_{r}^{*, *}$. But $d_{r}\left(c_{1} \otimes \alpha\right)$ must be zero in $E_{r}^{*, *}$, since it is so in $E_{4}^{*, *}$. This is a contradiction. The term $E_{2^{n+1}}^{*, *}$ is generated by even dimensional elements and c_{1} is a permanent cycle.

From Lemma (5.3) and the formula in the proof of Lemma (3.1), we get

$$
\begin{align*}
& \operatorname{gr} \tilde{K}(n)^{*}(B \tilde{G}) \cong \tilde{K} \oplus K \otimes \mathbb{F}_{2}\left[y_{3}, y_{4}\right]^{+} /\left(\pi_{34}\right) \oplus H \otimes \mathbb{F}_{2}\left[y_{3}, y_{4}\right] /\left(q_{34}\right)\left\{\pi_{34}\right\} \\
& \cong\left(\tilde{K}(n)^{*}\left[y_{1}, y_{2}\right] /\left(\tilde{\pi}_{12},[2]\left(y_{i}\right)\right) \oplus \tilde{K}(n)^{*}\left\{c_{1}\right\}\right)\left\{1,2 c_{2}\right\} \\
& \quad \oplus\left(\left(K(n)^{*}\left[y_{1}, y_{2}\right] /\left(\pi_{12},[2]\left(y_{i}\right)\right) \oplus K(n)^{*}\left\{c_{1}\right\}\right) \otimes \mathbb{F}_{2}\left[y_{3}, y_{4}\right]^{+} /\left(\pi_{34}\right)\right. \tag{5.7}\\
& \left.\quad \oplus K(n)^{*}\left\{1, y_{1}, y_{2}\right\} \otimes \mathbb{F}_{2}\left[y_{3}, y_{4}\right] /\left(q_{34}\right)\left\{\pi_{34}\right\}\right)\left[c_{2}^{2}\right] .
\end{align*}
$$

6. EULER CHARACTERISTICS OF EXTRASPECIAL p-GROUPS

In this section we give the Euler characteristic of an extraspecial p-group. The result is not new; the same formula was obtained by Brunetti [2].

The Morava K-theory Euler characteristic $\chi_{n, p}(G)$ of a finite group G, i.e., the difference between the ranks of the even and odd degree parts of $K(n)^{*}(B G)$, can be computed using the formula from [3]:

$$
\begin{equation*}
\chi_{n, p}(G)=\sum_{A<G} \frac{|A|}{|G|} \mu_{\mathcal{A}(G)}(A) \chi_{n, p}(A) \tag{6.1}
\end{equation*}
$$

where the sum is over all abelian subgroups $A<G$ and $\mu_{\mathcal{A}(G)}$ is a Möbius function defined recursively by

$$
\begin{equation*}
\sum_{A^{\prime}<A} \mu_{\mathcal{A}(G)}\left(A^{\prime}\right)=1 \tag{6.2}
\end{equation*}
$$

where the sum is over all abelian subgroups $A^{\prime}<G$ containing A. In particular, $\mu_{\mathcal{A}(G)}(A)=1$ when A is maximal. It is easy to see that one only has to consider subgroups arising as intersections of maximal ones. Furthermore, one clearly has $\chi_{n, p}(A)=\left|A_{(p)}\right|^{n}$ where $A_{(p)}$ denotes the p-part of the abelian group A.

The abelian subgroups of an extraspecial p-group $D(m)=p_{+}^{1+2 m}$ are in one-toone correspondence with the subspaces W of the central quotient $V \cong \mathbb{F}_{p}^{2 m}$ which are isotropic with respect to the bilinear form

$$
b(x, y)=x_{1} y_{2}+x_{2} y_{1}+\cdots+x_{2 m-1} y_{2 m}+x_{2 m} y_{2 m-1}
$$

Let $\alpha_{i}^{(m)}$ denote the number of such subspaces of dimension i. Note that the maximal dimension of a b-isotropic subspace is m.

The following lemma is an easy exercise in counting:
Lemma 6.1. $\alpha_{i}^{(m)}=\prod_{j=1}^{i} \frac{p^{2(m-j+1)}-1}{p^{j}-1}$.

The Möbius function on abelian subgroups can be computed via a Möbius function on b-isotropic subspaces defined as in (6.2). Let $\gamma_{k}^{(m)}$ denote its value on a subspace of dimension k : by symmetry, it is constant on subspaces of the same rank. Furthermore, it only depends on the codimension of a b-isotropic subspace in a maximal one, independent of m; this follows by considering W^{\perp} / W. The following formula can be proved inductively, see [2].
Lemma 6.2. $\gamma_{k}^{(m)}=(-p)^{(m-k)^{2}}$.
Since a b-isotropic subspace W of dimension i gives rise to an abelian subgroup of index $2 m-i$, we arrive at

Proposition 6.3 ([2]). The Morava K-theory Euler characteristic of $G=p_{+}^{1+2 m}$ is given by

$$
\chi_{n, p}(G)=\sum_{i=0}^{m} \frac{\alpha_{i}^{(m)} \gamma_{i}^{(m)}}{p^{2 m-i}} p^{(i+1) n}=\sum_{i=0}^{m}(-1)^{m-i} \alpha_{i}^{(m)} p^{(m-i-1)^{2}+(n-1)(i+1)}
$$

with α and γ as in the two lemmas above.
For example, for D_{8} and $D(2)=2_{+}^{1+4}$ we obtain

$$
\begin{aligned}
\chi_{n, 2}\left(D_{8}\right) & =\frac{3}{2} 4^{n}-\frac{1}{2} 2^{n}, \quad \text { and } \\
\chi_{n, 2}(D(2)) & =\frac{15}{4}\left(8^{n}-4^{n}\right)+2^{n}
\end{aligned}
$$

This agrees with the Euler characteristics we can compute using Corollary 3.2, as we shall now see. Let $Y_{i, j}=K(n)^{*}\left[y_{i}, y_{j}\right]^{+} /\left(\pi, y_{i}^{2^{n}}, y_{j}^{2^{n}}\right)$, and denote by $\chi(-)$ the dimension of a $K(n)^{*}$-vector space. Then one easily computes $\chi\left(Y_{i, j}\right)=3 \cdot\left(2^{n}-1\right)$. We have $K(n)^{*}\left(B D_{8}\right) \cong\left(Y_{1,2} \oplus K(n)^{*}\left\{1, c_{1}\right\}\right) \otimes \mathbb{Z} / 2\left[c_{2}\right] /\left(c_{2}^{2^{n-1}}\right)$. Hence

$$
\chi\left(K(n)^{*}\left(B D_{8}\right)=\left(3 \cdot\left(2^{n}-1\right)+2\right) 2^{n-1}=3 \cdot 2^{2 n-1}-2^{n-1}\right.
$$

Next consider $K(n)^{*}(B D(2))$. First note

$$
\begin{aligned}
\chi(\tilde{K} / 2) & =\chi\left(\left(Y_{1,2}+K(n)^{*}\left\{1, c_{1}\right\}\right)\left\{1,2 c_{2}\right\} \otimes \mathbb{Z} / 2\left[c_{2}^{2}\right] /\left(c_{2}^{2^{n-1}}\right)\right) \\
& =\left(3 \cdot\left(2^{n}-1\right)+2\right) \cdot 2 \cdot 2^{n-2}=\left(6 \cdot 2^{n}-2\right) \cdot 2^{n-2}
\end{aligned}
$$

were we used the fact that we can take either $y_{i}^{j} c_{2}$ or $2 y_{i}^{j} c_{2}$ as a basis element and may neglect the summand $K(n)^{*}\left\{b_{1}, b_{2}, y_{2} b_{1}\right\}$. Then

$$
\begin{aligned}
& \chi\left(K \otimes Y_{3,4}\right) \\
& =\chi\left(\left(Y_{1,2}+K(n)^{*}\left\{1, c_{1}, b_{1}, b_{2}, y_{2} b_{1}\right\}\right) \otimes Y_{34}\right) \cdot 2^{n-2} \\
& \\
& =\left(3\left(2^{n}-1\right)+5\right) \cdot 3\left(2^{n}-1\right) \cdot 2^{n-2}=\left(9 \cdot 2^{2 n}-3 \cdot 2^{n}-6\right) \cdot 2^{n-2} ; \\
& \begin{aligned}
& \chi\left(H \otimes \mathbb{Z} / 2\left[y_{3}, y_{4}\right] /\left(q_{34}, y_{3}^{2^{n}-1}, y_{4}^{2^{n}-1}\right)\{\pi\}\right)=\left(6 \cdot\left(2^{n}-1\right)\left(2^{n}-2\right)\right) \cdot 2^{n-2} \\
&=\left(6 \cdot 2^{2 n}-18 \cdot 2^{n}+12\right) \cdot 2^{n-2}
\end{aligned}
\end{aligned}
$$

Thefore we have $\chi\left(K(n)^{*}(B D(2))=\left(15 \cdot 2^{2 n}-15 \cdot 2^{n}+4\right) \cdot 2^{n-2}=\chi_{n, 2}(D(2))\right.$.

References

[1] M. Brunetti. Morava K-theories and dihedral groups. Ricerche Mat. 44 (1995), 31-40.
[2] M. Brunetti. Extraspecial p-groups and Morava K-theory. J. Pure Appl. Algebra 155 (2001), 105-113.

3] M. J. Hopkins, N. J. Kuhn, and D. C. Ravenel. Generalized group characters and complex oriented cohomology theories. J. Amer. Math. Soc. 13 (2000), 553-594.
[4] J. R. Hunton. The Morava K-theories of wreath products. Math. Proc. Camb. Phil. Soc. 107 (1990), 309-318.
[5] I. Kriz. Morava K-theory of classifying spaces: some calculations. Topology 36 (1997), 12471273.
[6] I. Kriz and K. Lee. Odd degree elements in the Morava $K(n)$ cohomology of finite groups. Topology Appl. 103 (2000), 229-241.
7] D. G. Quillen. The mod 2 cohomology rings of extra-special 2-groups and the spinor groups. Math. Ann. 194 (1971), 197-212.
[8] B. Schuster. On the Morava K-theory of some finite 2-groups. Math. Proc. Camb. Phil. Soc. 121 (1997), 7-13.
[9] M. Tezuka and N. Yagita. Cohomology of finite groups and Brown-Peterson cohomology. Algebraic Topology (Arcata, CA, 1986), 396-408, Lecture Notes in Math. 1370, Springer, Berlin, 1989.
[10] M. Tezuka and N. Yagita. Cohomology of finite groups and Brown-Peterson cohomology II. Homotopy theory and related topics (Kinosaki, 1988), 57-69. Lecture Notes in Math. 1418, Springer, Berlin, 1990.
[11] N. Yagita. Cohomology for groups $\operatorname{rank}_{p}(G)=2$ and Brown-Peterson cohomology. J. Math. Soc. Japan 45 (1993), no. 4, 627-644

FB 7 Mathematik, Bergische Universität Wuppertal, Wuppertal, Germany
E-mail address: schuster@math.uni-wuppertal.de
Department of Mathematics, Faculty of Education, Ibaraki University, Mito, Ibaraki, Japan

E-mail address: yagita@mito.ipc.ibaraki.ac.jp

[^0]: 2000 Mathematics Subject Classification. Primary 55R35, 55N20; Secondary 57T25.
 Key words and phrases. Morava K-theory, extraspecial 2-groups.

