
MORAVA K-THEORY OF EXTRASPECIAL 2-GROUPS

BJÖRN SCHUSTER AND NOBUAKI YAGITA

Abstract. We compute the Morava K-theory of some extraspecial 2-groups
and associated compact groups.

1. Introduction

Let G be a finite group and BG denote its classifying space. Not that many
computations for the Morava K-theory of BG have been carried out, the most
notable exception being I. Kriz’s article [5] and its successor [6], where he calculates
just enough about the 3-primary second Morava K-theory of the 3-Sylow subgroup
of GL4(F3) to conclude that it cannot be concentrated in even degrees, the first
such example known. Other computations can be found in [1], [3], [4], [8], [9], [10],
and [11].

In this paper we present a few more calculations concerning extraspecial 2-
groups. We mainly work with integral Morava K-theory at 2, which shall be denoted
K̃(n). This is a complex oriented theory with coefficients K̃(n)∗ ∼= WF2n [vn, v−1

n ],
the ring of Laurent polynomials over the Witt ring WF2n , with vn of degree
−2(2n − 1). It has a complex orientation x such that the 2-series of the associ-
ated formal group law takes the form [2](x) = 2x− vnx2n

. Sometimes we switch to
the mod 2 reduction K(n).

In Section 2 we describe the groups we want to study and recall Quillen’s compu-
tation of their mod 2 cohomology. As a corollary we consider a slight modification
serving as motivation for our calculational approach. Section 3 contains the main
technical result, Lemma 3.1, which under favourable circumstances computes the
spectral sequence of an extension of Z/2 × Z/2 by a “good” group in the sense of
Hopkins-Kuhn-Ravenel, i.e., whose Morava K-theory is generated by transfers of
Euler classes. The next two sections contain applications to extraspecials of order
8 and 32. Section 4 is a rehash of the already known computations for D8 and
Q8 and serves mainly to set up notation for the next section, where we deal with
the central products D8 ◦ D8 and D8 ◦ Q8. We need some of the multiplicative
structure for D8, and make repeated use of generalized characters à la Hopkins-
Kuhn-Ravenel [3]. We also consider the associated compact groups which arise by
replacing the centre Z/2 by the circle group S1. The last section contains calcula-
tions of the Euler characteristics of extraspecial groups (for any prime), due also
to Brunetti [2]. We omit proofs, since they are now available in [2].

2. Extraspecial 2-groups

There are three types of (almost) extraspecial 2-groups, the so-called real, com-
plex and quaternion types. These may be described as central products. Let D8
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and Q8 denote the dihedral respectively quaternion group of order 8. The extraspe-
cials of real type have order 22m+1 for some m > 0 and correspond to m-fold central
products of D8, for the quaternion type replace one copy D8 with a Q8, whereas
the complex type is obtained as the central product of a real extraspecial with a
cyclic group of order four.

In this section we try to motivate our subsequent computations, and thus concen-
trate on the real case only. So let D(m) := D8 ◦ · · · ◦D8 (m copies); in Hall-Senior
notation this group is known as 21+2m

+ . Its mod 2 cohomology was computed by
Quillen [7]: one has a central extension

1 → Z/2 −→ D(m) −→ E → 1(2.1)

where E ∼= (Z/2)2m is a 2m-dimensional vector space over F2. The Serre spectral
sequence associated to this extension takes the form

E2 = H∗(BE; H∗(BZ/2)) ∼= F2[u] ⊗ F2[x1, . . . , x2m](2.2)

with u and xi in degree one; the extension class is q := x1x2 + · · · + x2m−1x2m.
Quillen’s computation can be summarised as follows:

Theorem 2.1 (Quillen [7]). The only differentials in the spectral sequence (2.2)

are d2u = q, d2k+1u
2k

= Qk−1q for 1 ≤ k < m, where Qi stands for Milnor’s

primitive operation in the Steenrod algebra. The sequence (q, Q0q, . . . , Qm−2q) is

regular, u2m

is a permanent cycle since it represents the Euler class w2m of the spin

representation ∆. Thus

H∗(D(m); F2) ∼= F2[w2m ] ⊗ F2[x1, . . . , x2m]/(q, Q0q, . . . , Qm−2q) .

The nontrivial Stiefel-Whitney classes of ∆ are w2m and w2m−2i , 0 ≤ i ≤ m.

Knowing the result, one can slightly rearrange the computation. D(m + 1)
contains D(m) as a normal subgroup with quotient Z/2 × Z/2, i.e., one has an
extension

1 → D(m) −→ D(m + 1) −→ V → 1(2.3)

with V ∼= Z/2 × Z/2 acting trivially on the kernel. The Serre spectral sequence
corresponding to (2.3) has E2-term

E2 = H∗(BV ; H∗(BD(m)) ∼= F2[x2m+1, x2m+2] ⊗ H∗(BD(m)) .(2.4)

Corollary 2.2. The spectral sequence (2.4) collapses on the E3-page. The only

non-trivial differential is d2w2m = x2m+1x2m+2 ⊗ w2m−1.

Proof. Since the cohomology of extraspecial 2-groups of real type is detected on
maximal elementary abelian subgroups, the action of d2 can be worked out by
looking at the restrictions to those subgroups. Each maximal elementary abelian
W is of the form C ×U where C is the centre and U a maximal isotropic subspace
of the central quotient E. (Recall from [7] that q may be regarded as a quadratic
form on E.) The corresponding extension is of the form

1 → C × U −→ D8 × U −→ V → 1 ,

and the only differential is d2u = x2m+1x2m+2. Quillen tells us that ∆ restricts to
W as χ⊗ reg(U), where χ is the non-trivial character of C and reg(U) the regular
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representation of U . Applying the formula expressing w.(χ ⊗ reg(U)) in terms of
w.(χ) and w.(reg(U)) we obtain

wi(χ ⊗ reg(U)) =
i
∑

j=0

(

2m − i + j

j

)

w1(χ)jwi−j(reg(U)) .

So w2m restricts to
∑m

k=0 u2k

w2m−2k(reg(U)), since other Stiefel-Whitney classes
of reg(U) are zero, and w2m−1 to w2m−1(reg(U)). Thus d2 is as claimed; the rest
follows from a Poincaré series calculation.

Note that w2
2m represents the Euler class of the spin representation of D(m+1).

Furthermore, there are extension problems in the E∞-term. Let qm = x1x2 +
· · · + x2m−1x2m denote the extension class of D(m), then qm drops in filtration to
x2m+1x2m+2 (so we get the relation qm+1 = 0), and the other relations follow as
solutions to extension problems related to Qiqm = 0 and x2m+1x2m+2w2m−1 = 0.

The (additive) simplicity of the spectral sequence of this extension is what lets
us believe it to be possible to emulate this computation in Morava K-theory. In the
subsequent sections we shall try to prove that the Atiyah-Hirzebruch-Serre spectral
sequence of (2.3) behaves analogously, meaning it has only two differentials (the
second being vn ⊗ Qn, see below).

3. Spectral sequence calculations

In this section we consider the Atiyah-Hirzebruch-Serre spectral sequence asso-
ciated to extensions

1 → G′ → G → V → 0

with V ∼= Z/2 × Z/2, acting trivially on G′. The spectral sequence has E2-term

E∗,∗
2 = H∗(Z/2 ⊗ Z/2; K̃(n)∗(BG′)) =⇒ K̃(n)∗(BG) .(3.1)

Lemma 3.1. Let G be as above. Suppose K(n)odd(BG′) = 0 for all n ≥ 1, and

moreover that all elements in E0,∗
4 are permanent cycles. Then K̃(n)odd(BG) = 0

and K̃(n)∗(BG) has no p-torsion, and K(n)odd(BG) = 0.

Proof. K(n)odd(BG′) = 0 implies K̃(n)odd(BG′) = 0 and K̃(n)∗(BG′) is p-torsion
free. One has H∗(BV ; F2) ∼= F2[x1, x2]; setting yi = x2

i and α = x2
1x2 + x1x

2
2, the

E2-page of the spectral sequence is

E∗,∗′

2
∼=

{

K̃(n)∗(BG′) for ∗ = 0 ,

K̃(n)∗(BG′) ⊗ F2[y1, y2, α]/(α2 = y2
1y2 + y1y

2
2) for ∗ > 0 .

We shall write π for the element y2
1y2 + y1y

2
2 . The first potentially non-trivial

differential is d3. Any even (respectively odd) degree element in E∗,∗
2 is of the

form x ⊗ f (x ⊗ fα) for some x ∈ K̃(n)∗(BG′) and f ∈ F2[y1, y2]. We shall first
consider the case n ≥ 2, the argument for n = 1 being similar (see the remark at
the end). Note that d3 is zero on any element of F2[y1, y2, α]/(α2 = y2

1y2 + y1y
2
2)

by comparison to the Atiyah-Hirzebruch spectral sequence for V and n ≥ 2. Hence
d3(x ⊗ f) = x′ ⊗ fα and d3(x ⊗ fα) = x′ ⊗ fπ for some x′ ∈ K(n)∗(BG′). Thus
we obtain additive isomorphisms

{

E0,∗
4

∼= K̃

E>0,∗
4

∼= K ⊗ F2[y1, y2]/(π) ⊕ H ⊗ F2[y1, y2]{α, π}
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where K̃ = Ker(d3|K̃(n)∗(BG′)), K = Ker(d3|K(n)∗(BG′)) = K̃/(K̃ ∩ 2E0,∗
2 ), and

H = H(K(n)∗(BG′); d3 ⊗α−1). As K̃(n)∗-algebra, the E4-page is generated by α,

yi, and the generators in K̃. By hypothesis, all but α are permanent cycles, so the
next non-zero differential is

d2n+1−1(α) = vn ⊗ Qnα = vn ⊗ (y2n

1 y2 + y1y
2n

2 ) = vn ⊗ qπ

where q = (y2n

1 y2 + y1y
2n

2 )/π = (y2n−2
1 + y2n−3

1 y2 + · · · + y2n−2
2 ) . Thus we get

E0,∗
2n+1

∼= K̃ ,

E>0,∗
2n+1

∼= K ⊗ F2[y1, y2]/(π) ⊕ H ⊗ F2[y1, y2]/(q){π} .

This is concentrated in even degrees, whence E2n+1
∼= E∞ and K̃(n)odd(BG) = 0.

It remains to prove that K̃(n)∗(BG) has no 2-torsion. Let 0 6= x ∈ K̃(n)∗(BG).

Represent x by x′ ∈ E∞. If x′ ∈ E0,∗
∞ then it cannot be 2-torsion, since K̃(n)∗(BG′)

is 2-torsion free. If x′ is in K ⊗ F2[y1, y2]/(π), we may write x′ =
∑

x̄ ⊗ f with
x̄ ∈ K, f ∈ F2[y1, y2]/(π). Rewrite f as y1f1 + λys

2, λ ∈ F2. Since 2yi = vny2n

i in

K̃(n)∗(BG) (this is immediate from the calculation for cyclic groups), 2x can be
represented by

(2x)′ =
∑

vnx̄ ⊗ (y2n

1 f1 + λy2n+s−1
2 ) .

We claim that the right hand side of this expression is non-zero: if λ 6= 0, it does not
lie in the ideal (y1y2) ⊃ (π), and if λ = 0, then y2n

1 f ∈ (π) implies y1f ∈ (π). Lastly

suppose x′ ∈ H⊗F2[y1, y2]/(y2n−2
1 + · · ·+y2n−2

2 ){π} ⊂ H⊗F2[y1, y2]/(Qnα). Write
x′ =

∑

x̄⊗fπ and fπ = y1f1. Then (2x)′ 6= 0 if vn⊗f1y
2n

1 6= 0. But f1y
2n

1 ∈ (Qnα)
implies f1y1 ∈ (Qnα): tensoring up with the finite field of 2n elements F2n yields

Qnα = y2n

1 y2 + y1y
2n

2 =
∏

µ∈F2n

(y1 + µy2) .

Finally, for n = 1 the differntial d3 is given by v1π; the claim follows by filtering
E∗,∗

2 by powers of π and setting q = 1.

Since K̃ is 2-torsion free and the map defined by

ayi
1 7→ ayi+2n−1

1 and yi
2 7→ yi+2n−1

2

on E>0,∗
∞ is injective, one easily sees

Corollary 3.2. Suppose G is as in Lemma 3.1. Then there is an additive iso-

morphism

K(n)∗(BG) ∼= E0,∗
∞ /2 ⊕ E>0,∗

∞ /(y2n

1 , y2n

2 )

∼= K̃/2 ⊕ K ⊗ Z/2[y1, y2]
+/(y2n

1 , y2n

2 , π)

⊕ H ⊗ Z/2[y1, y2]/(y2n−1
1 , y2n−1

2 , q){π}

4. The cases D8 and Q8

The groups D8 and Q8 have presentations

D8 = 〈a1, a | a2
1 = a4 = 1 , [a1, a] = a2〉 ,

Q8 = 〈a1, a2 | a4
1 = a4

2 = 1 , [a1, a2] = a2
1 = a2

2〉 ,

respectively. Thus there are central extensions of the form Z/2 → G → V for G
either D8 or Q8, i.e., we have G′ = Z/2 in the setup of Section 3. Setting a2 = aa1

in the case of D8, the quotient V is generated by the cosets āi for either group; let
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xi ∈ H∗(BV ; F2) be dual to āi. Recall that K̃(n)∗(BZ/2) ∼= K̃(n)∗[u]/(2u−vnu2n

)
where u is the Euler class of the non-trivial linear character η of Z/2. In the spectral
sequence (3.1), we get d3u = α. Hence H = Ker(d3)/ Im(d3 ⊗ α−1) = 0, and u2

is a permanent cycle, since it is the restriction of the Euler class of the irreducible
two-dimensional complex representation ρ of G to the fibre. Thus

E0,∗
∞

∼= K̃(n)∗[u2]/((2u − vnu2n

) ∩ K̃(n)∗[u2]) ∼= K̃(n)∗[u2]{1, 2u}

E>0,∗
∞

∼= K̃(n)∗[u2]/(vnu2n

) ⊗ F2[y1, y2]/(π) .

It follows that K̃(n)∗(BG) is concentrated in even degrees and has no 2-torsion,

whence K(n)∗(BG) ∼= K̃(n)∗(BG)/(2). Choosing an element c̄2 ∈ K̃(n)∗(BG)
represented by u2, one obtains

Theorem 4.1 ([9], [8]). Let G be either D8 or Q8. Then there is an additive iso-

morphism

K(n)∗(BG) ∼=
(

K(n)∗{c̄1} ⊕ K(n)∗[y1, y2]/(π, y2n

1 , y2n

2 )
)

[c̄2]/(c̄2n−1

2 ) .

The multiplicative structure is given by

c̄1y1 = y2
1 , c̄1y2 = y2

2 , c̄2
1 = y2

1 + y1y2 + y2
2(4.1)

identifying c̄1 = vnc̄2n−1

2 + y1 + y2 for D8 and c̄1 = vnc̄2n−1

2 for Q8.

The generators yi can be identified with the Euler classes of the representations

ρi : G → V → 〈āi〉
η
→ C∗. Switching from c̄i to ci = ci(ρ), we may write c2 = c̄2

mod (y1, y2)
2. Then vnc2n−1

2 = vnc̄2n−1

2 mod (y1, y2)
2n

. We also have c1 = c̄1

mod (y1, y2)
2, by considering restrictions to maximal abelian subgroups, see below.

Hence relation (4.1) in the theorem holds modulo (y1, y2)
3 with c̄i replaced by ci.

We want to compute the restrictions of c2 to the maximal subgroups of G.
Consider G = D8 first. Let C = 〈a2〉 be the centre of D8, and Ai = 〈ai〉. The
maximal subgroups are A = 〈a〉 ∼= Z/4 and C × Ai

∼= Z/2 × Z/2. Let ρA : A → C∗

be a faithful representation of A. Then c1(ρA) restricts to the generator u of the
centre, and identifying classes with their images under restriction, we may write

K(n)∗(BA) ∼= K(n)∗[u]/[4](u) ∼= K(n)∗[u]/(u4n

) ;

K(n)∗(BC × Ai) ∼= K(n)∗[u, yi]/([2](u), [2](yi)) ∼= K(n)∗[u, yi]/(u2n

, y2n

i ) .

We have ResA(ρi) = ρA ⊗ ρA, and since ρ = IndG
A(ρA), the double coset formula

gives ResA(ρ) = ρA⊕ρ−1
A . The restrictions of the total Chern class are ResA(c(ρ)) =

(1 + u)(1 + [−1]u) and ResC×Ai
(c(ρ)) = (1 + u)(1 + u +K(n) yi). Thus we obtain

the following restrictions:

ResA(c2) = ([−1](u))u = u2 + vnu2n+1 mod (u2n+1

) ;(4.2)

ResA(c1) = ResA(yi) = [2](u) = vnu2n

.(4.3)

Similarly, we get

ResC×Ai
(c2) = u(u +K(n) yi) = u2 + uyi + vnu2n−1+1y2n−1

i ;(4.4)

ResC×Ai
(c1) = u + (u +K(n) yi) = yi + vnu2n−1

y2n−1

i .(4.5)

Next consider the quaternion case. Here the maximal subgroups are B1 = 〈a1〉,
B2 = 〈a2〉, and B3 = 〈a1a2〉, all isomorphic to Z/4. If ei : Bi → C

∗ is a faithful
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representation, we have ρ ∼= IndQ8

Bi
(ei) for each Bi, and similar to above we can see

ResBi
(c2) = u2

i + vnu2n+1
i mod(u2n+1

) in K(n)∗(BBi) ∼= K(n)∗[ui]/(u4n

i ) .(4.6)

To finish this section, we consider a compact group defined by Q8 or D8. When
a group G has centre C ∼= Z/2, let us write G̃ for the central product G ×C S1,

identifying C with {1,−1} ⊂ S1. Then D̃8
∼= Q̃8. Using Lemma 3.1, we easily see:

Theorem 4.2. There is an additive isomorphism

K(n)∗(BD̃8) ∼=
(

K(n)∗{c̄1} ⊕ K(n)∗[y1, y2]/(π, y2n

1 , y2n

2 )
)

[c̄2].

The multiplicative structure is given by (4.1) mod (y1, y2)
3 in Theorem 4.1.

5. Extraspecial groups of order 25

In this section we consider the central products G = D8 ◦ D8 and G = D8 ◦ Q8.
In both cases, G is generated by elements a1, . . . , a4 of order 2, and we have an
extension

1 → G′ → G → V → 0 with G′ ∼= D8 , V ∼= Z/2 × Z/2(5.1)

and trivial V -action on G′. Set Gij = 〈ai, aj〉 ⊂ G, numbering the generators ai

such that G′ = G12, and Ai = 〈ai〉. Then G34
∼= D8 or Q8, and G34/C = V

for C = centre of G. This allows us to keep the notation for K(n)∗(BD8) from
the previous section. Furthermore, let H∗(BV ; F2) = F2[x3, x4], and y3, y4, α ∈
H∗(BV ) correspond to x2

3, x
2
4, and x2

3x4 + x3x
2
4, respectively. We consider the

spectral sequence

E∗,∗
2 = H∗(BV ; K̃(n)∗(BD8)) =⇒ K̃(n)∗(BG) .(5.2)

Lemma 5.1. In the above spectral sequence, we have

d3c2 = c1 ⊗ α mod (y1, y2)
2 .

Proof. For dimensional reasons, d3c2 = (λ1y1+λ2y2+λ3c1)⊗α mod (y1, y2)
2 with

λi ∈ F2. Consider the map of spectral sequences induced by

1 −−−−→ A1 × C −−−−→ A1 × G34 −−−−→ V = G34/C −−−−→ 0




y
i





y
i

∥

∥

∥

1 −−−−→ G′ −−−−→ G −−−−→ V −−−−→ 0

Since ResA1×C(c2) = u2 + uy1 mod (y2
1) and d3u = 1 ⊗ α, we get

i∗(d3c2) = d3(u
2 + uy1) = y1 ⊗ α mod (y2

1)

and hence λ1+λ3 = 1. Similarly, replacing A1 with A2, we get λ2+λ3 = 1. Finally,
consider the inclusion of A into G12:

1 −−−−→ A −−−−→ A ×C G34 −−−−→ V −−−−→ 0




y

j





y

j

∥

∥

∥

1 −−−−→ G12 −−−−→ G −−−−→ V −−−−→ 0

Now modulo u2n+1

, we have ResA(c2) = u2+vnu2n+1 and thus j∗(d3c2) = vnu2n

⊗α.

Since ResA(c1) = vn(ResA(c2))
2n−1

= vnu2n

, we get λ1 + λ2 + λ3 = 1, too.
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Therefore Theorem 4.1 gives

d3(yic2) = yic1 ⊗ α = y2
1 ⊗ α mod (y1, y2)

3 ,

d3(c1c2) = c2
1 ⊗ α = y1y2 ⊗ α mod (y1, y2)

3 .

Using these formulae, it is easy to see that K̃ = Ker(d3|K̃(n)∗(BD8)) is generated as

K(n)∗-algebra by

y1 , y2 , c2
2 (which gives c1) , 2c2

b1 = y2n−1
1 c2 , b2 = y2n−1

2 c2 , y1b2 = y1y
2n−1
2 c2 .

(5.3)

The last three terms are in K̃ since vny2n

i = 0 in K(n)∗(BD8). More precisely, we
have

Lemma 5.2. In the spectral sequence (5.2), the kernel K̃ and the homology H with

respect to d3 ⊗ α−1 are given additively by

K̃ ∼=

(

(K̃(n)∗[y1, y2]/(π̃, [2](yi)) ⊕ K̃(n)∗{c1}){1, 2c2}

+ K̃(n)∗{b1, b2, y1b2}

)

[c2
2]/(c2n−1

2 ) ,

H ∼= K(n)∗{1, y1, y2, b1, b2, y1b2}[c
2
2]/(c2n−1

2 )

where π̃ = y1y2(y1 +K̃(n) y2). Note that 2bi = 2c2y
2n−1
i .

A similar statement holds for the associated compact group:

Lemma 5.3. In the spectral sequence 1 → G̃′ → G̃ → V → 1, the kernel K̃ and

the homology H are given additively by

K̃ ∼= (K̃(n)∗[y1, y2]/(π̃, [2](yi)) ⊕ K̃(n)∗{c1}){1, 2c2})[c
2
2] ,

H ∼= K(n)∗{1, y1, y2}[c
2
2] .

We want to show that all elements in K̃ are permanent. Let t = TrG
G12×A3

(c2⊗1).
By the double coset formula, we get

ResG
G12

(t) =
∑

g∈G12\G/G12×A3

TrG12

G12∩(G12×A3)g Res
(G12×A3)g

G12∩(G12×A3)g g∗(c2 ⊗ 1) .

Here G12\G/G12 × A3
∼= A4 and G12 ∩ (G12 × A3)

g = G12 for all g ∈ A4. Hence

ResG
G12

(t) = c2 + a∗
4c2 = 2c2 .

Therefore t ∈ K̃(n)∗(BG) corresponds to the element [2c2] ∈ E0,∗
∞ .

Next we look for elements corresponding to the bi of Lemma 5.2. Let A′ = 〈a3a4〉;
this is cyclic of order 4. Let ρ′A′ be a faithful one-dimensional representation of A′.

Set ρ′ = IndG34

A′ (ρA′) and c′2 = c2(ρ
′). Define ti = TrG

G34×Ai
(c′2 ⊗ 1) for i = 1, 2. We

claim the following identities:

vnb1 = ResG
G12

(t − t2 + y2
2 − y1y2)(5.4)

vnb2 = ResG
G12

(t − t1 + y2
1 − y1y2)(5.5)

It suffices to check them on the abelian subgroups of G12, by [3]. Thus we need to
compute the restrictions to C × Ai and A. Since ρ restricts to η + ηλi on C × Ai
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and to ρA + ρ3
A on A, we have

ResG
C×Ai

(t) = 2u(u +K̃(n) yi) ResG
A(t) = 2z[3](z)

ResG12

C×A1
(b1) = u(u +K̃(n) y1)y

2n−1
1 ResG12

A (bi) = z[3](z)([2]z)2
n−1

ResG12

C×A2
(b1) = 0

Here z = c1(ρA) denotes the generator of K̃(n)∗(BA) ∼= K̃(n)∗[[z]]/[4](z); clearly
y1, y2 restrict to [2](z).
Now C × A1\G/G34 × A2

∼= 1 and (C × A1) ∩ (G34 × A2) = C; the double coset
formula then says

ResG
C×A1

(t2) = TrC×A1

C Res
G34×A2)
C (c′2 ⊗ 1) = TrC×A1

C (u2)

= u2 TrA1

{1}(1) = u2(2 − vny2n−1
1 )

where we used the fact (see e.g. [3] or [5])

TrA1

{1}(1) =
[2](y1)

y1
= 2 − vny2n−1

1 .(5.6)

Similarly, we have C ×A2\G/G34 ×A2
∼= A1 and (C ×A2)∩ (G34 ×A2) = C ×A2,

whence

ResG
C×A2

(t2) = ResG34×A2

C×A2
(1 + a∗

1)(c
′
2 ⊗ 1)

= c2(2η) + c2(η ⊗ λ2) = u2 + (u +K̃(n) y2)
2 .

By the double coset formula again

ResG
A(ti) = TrA

C(u2) = z2 TrA
C(1) = z2 [4](z)

[2](z)
.

Thus

ResG
C×A1

(t− t2 + y2
2 − y1y2)−ResG12

C×A1
(vnb1) = (u(u+K̃(n) y1)−u2)(2− vny2n−1

1 ) .

Let χ be a generalized character of C × A1. If χ(y1) = 0, then

χ((u(u +K̃(n) y1) − u2)(2 − vny2n−1
1 )) = 2(χ(u)2 − χ(u)2) = 0 ,

whereas if χ(y1) 6= 0, then χ(2 − vny2n−1
1 ) = [2](χ(y1))/χ(y1) = 0. Secondly,

ResG
C×A2

(t−t2+y2
2−y1y2)−ResG12

C×A2
(vnb1) = 2u(u+K̃(n)y2)−(u+K̃(n)y2)

2−u2+y2
2 .

Any generalized character χ with χ(u) = 0 or χ(y2) = 0 clearly annihilates this
expression, so assume without loss of generality that χ(u) = π, where π is a uni-
formizing element. Any other nonzero root of the 2-series is of the form ζπ for a
(2n − 1)-st root of unity ζ. Then [ζ](π) = ζπ, and π +K̃(n) ζπ = π +K̃(n) [ζ](π) =

[1 + ζ](π) = (1 + ζ)π, since (1 + ζ)2
n−1 ≡ 1 mod 2. Thus

χ(2u(u+K̃(n)y2)−(u+K̃(n)y2)
2−u2+y2

2)) = 2π(1+ζ)π−(1+ζ)2π2−π2+ζ2π2 = 0 .

Finally,

ResG
A(t − t2 + y2

2 − y1y2) − ResG12

A (vnb1) =

= 2z[3](z)− z2 [4](z)

[2](z)
− vnz[3](z)([2](z))2

n−1 = (z[3](z)− z2)
[4](z)

[2](z)

where we used vn([2](z))2
n−1 = 2 − [4](z)/[2](z). Let α denote the value of a

character on z, then either [4](α)/[2](α) = 0, if [2](α) 6= 0, or [4](α)/[2](α) = 2, if



MORAVA K-THEORY OF EXTRASPECIAL 2-GROUPS 9

[2](α) = 0, and in that case α[3](α) − α2 = α(α +K̃(n) [2](α)) − α2 = α2 − α2 = 0.

This finishes the proof of equation (5.4), the other one follows by exchanging the
indices 1 and 2. Thus the assumptions of lemma (3.1) hold, yielding

Theorem 5.4. Let G be an extraspecial group of order 32. Then K(n)∗(BG) is

concentrated in even degrees, and generated by transfers of Euler classes. �

In the compact case it suffices to show that c1 is a permanent cycle. Suppose
that drc1 = x ⊗ fα 6= 0 for 3 ≤ r ≤ 2n+1 − 1. Note that x ⊗ fα2 = x ⊗ fπ 6= 0
in E∗,∗

r . But dr(c1 ⊗ α) must be zero in E∗,∗
r , since it is so in E∗,∗

4 . This is a
contradiction. The term E∗,∗

2n+1 is generated by even dimensional elements and c1

is a permanent cycle.
From Lemma (5.3) and the formula in the proof of Lemma (3.1), we get

gr K̃(n)∗(BG̃) ∼= K̃ ⊕ K ⊗ F2[y3, y4]
+/(π34) ⊕ H ⊗ F2[y3, y4]/(q34){π34}

∼= (K̃(n)∗[y1, y2]/(π̃12, [2](yi)) ⊕ K̃(n)∗{c1}){1, 2c2}
⊕ ((K(n)∗[y1, y2]/(π12, [2](yi)) ⊕ K(n)∗{c1}) ⊗ F2[y3, y4]

+/(π34)
⊕ K(n)∗{1, y1, y2} ⊗ F2[y3, y4]/(q34){π34})[c

2
2] .

(5.7)

6. Euler characteristics of extraspecial p-groups

In this section we give the Euler characteristic of an extraspecial p-group. The
result is not new; the same formula was obtained by Brunetti [2].

The Morava K-theory Euler characteristic χn,p(G) of a finite group G, i.e., the
difference between the ranks of the even and odd degree parts of K(n)∗(BG), can
be computed using the formula from [3]:

χn,p(G) =
∑

A<G

|A|

|G|
µA(G)(A)χn,p(A)(6.1)

where the sum is over all abelian subgroups A < G and µA(G) is a Möbius function
defined recursively by

∑

A′<A

µA(G)(A
′) = 1(6.2)

where the sum is over all abelian subgroups A′ < G containing A. In particular,
µA(G)(A) = 1 when A is maximal. It is easy to see that one only has to consider
subgroups arising as intersections of maximal ones. Furthermore, one clearly has
χn,p(A) = |A(p)|

n where A(p) denotes the p-part of the abelian group A.

The abelian subgroups of an extraspecial p-group D(m) = p1+2m
+ are in one-to-

one correspondence with the subspaces W of the central quotient V ∼= F
2m
p which

are isotropic with respect to the bilinear form

b(x, y) = x1y2 + x2y1 + · · · + x2m−1y2m + x2my2m−1 .

Let α
(m)
i denote the number of such subspaces of dimension i. Note that the

maximal dimension of a b-isotropic subspace is m.
The following lemma is an easy exercise in counting:

Lemma 6.1. α
(m)
i =

i
∏

j=1

p2(m−j+1) − 1

pj − 1
.
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The Möbius function on abelian subgroups can be computed via a Möbius func-

tion on b-isotropic subspaces defined as in (6.2). Let γ
(m)
k denote its value on a

subspace of dimension k: by symmetry, it is constant on subspaces of the same
rank. Furthermore, it only depends on the codimension of a b-isotropic subspace
in a maximal one, independent of m; this follows by considering W⊥/W . The
following formula can be proved inductively, see [2].

Lemma 6.2. γ
(m)
k = (−p)(m−k)2 .

Since a b-isotropic subspace W of dimension i gives rise to an abelian subgroup
of index 2m − i, we arrive at

Proposition 6.3 ([2]). The Morava K-theory Euler characteristic of G = p1+2m
+

is given by

χn,p(G) =

m
∑

i=0

α
(m)
i γ

(m)
i

p2m−i
p(i+1)n =

m
∑

i=0

(−1)m−iα
(m)
i p(m−i−1)2+(n−1)(i+1)

with α and γ as in the two lemmas above.

For example, for D8 and D(2) = 21+4
+ we obtain

χn,2(D8) =
3

2
4n −

1

2
2n , and

χn,2(D(2)) =
15

4
(8n − 4n) + 2n .

This agrees with the Euler characteristics we can compute using Corollary 3.2, as
we shall now see. Let Yi,j = K(n)∗[yi, yj ]

+/(π, y2n

i , y2n

j ), and denote by χ(−) the

dimension of a K(n)∗-vector space. Then one easily computes χ(Yi,j) = 3 · (2n−1).

We have K(n)∗(BD8) ∼= (Y1,2 ⊕ K(n)∗{1, c1}) ⊗ Z/2[c2]/(c2n−1

2 ). Hence

χ(K(n)∗(BD8) = (3 · (2n − 1) + 2)2n−1 = 3 · 22n−1 − 2n−1 .

Next consider K(n)∗(BD(2)). First note

χ(K̃/2) = χ((Y1,2 + K(n)∗{1, c1}){1, 2c2} ⊗ Z/2[c2
2]/(c2n−1

2 ))

= (3 · (2n − 1) + 2) · 2 · 2n−2 = (6 · 2n − 2) · 2n−2 ,

were we used the fact that we can take either yj
i c2 or 2yj

i c2 as a basis element and
may neglect the summand K(n)∗{b1, b2, y2b1}. Then

χ(K ⊗ Y3,4) = χ((Y1,2 + K(n)∗{1, c1, b1, b2, y2b1}) ⊗ Y34) · 2
n−2

= (3(2n − 1) + 5) · 3(2n − 1) · 2n−2 = (9 · 22n − 3 · 2n − 6) · 2n−2 ;

χ(H ⊗ Z/2[y3, y4]/(q34, y
2n−1
3 , y2n−1

4 ){π}) = (6 · (2n − 1)(2n − 2)) · 2n−2

= (6 · 22n − 18 · 2n + 12) · 2n−2 .

Thefore we have χ(K(n)∗(BD(2)) = (15 · 22n − 15 · 2n + 4) · 2n−2 = χn,2(D(2)).
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