MORAVA K-THEORY OF GROUPS OF ORDER 32

BJÖRN SCHUSTER

Abstract

We show that the Morava K-theories of the groups of order 32 are concentrated in even degrees.

Let G be a finite group and $B G$ denote its classifying space. Determining the Morava K-theory of $B G$ is generally difficult, mainly due to the weakness of existing methods of calculation, which all require knowledge of the cohomology of p-groups - in itself a notorious problem. Certain series of groups with particularly simple structure, such as wreath products, or groups having a cyclic maximal subgroup, or minimal non-abelian groups, are quite tractable, see e.g. the work of Hopkins-Kuhn-Ravenel [3], Hunton [4], and Yagita and his coauthors ([7], [10], [11], [12], [14]). A hard example is the 3-Sylow supgroup of $G L_{4}\left(\mathbb{F}_{3}\right)$: in [5], Kriz computes just enough of its 3-primary Morava K-theory to conclude that there are odd dimensional elements in it, thereby disproving a conjecture of Ravenel. A complete calculation however is still elusive. In later work by Kriz and Lee, this example was generalised to all n and all odd primes p [6].

In this note we shall consider the groups of order 32. In many cases the Morava K-theory is already known, or easily deduced from results in the literature. For the remaining groups, it was established in [8] that for $n=2$ at least, their Morava K-theory $K(n)^{*}(B G)$ is generated by transfers of Euler classes of complex representations. In other words, all groups of order 32 are " $K(2)$-good" in the sense of Hopkins-Kuhn-Ravenel. Some of the results however relied on computer calculations. This is to be remedied here, although we only prove a weaker statement:

Theorem. Let G be a group of order 32. Then $K(n)^{\text {odd }}(B G)=0$.
When starting this project, our objective of course was not to prove such a result, rather we hoped - rather naively, perhaps - that order 32 would be big enough to find a 2-primary counterexample to the even degree conjecture. In this we have failed and the problem remains open.

We have not tried to determine ring structures. This should be possible in principle, using methods similar to those employed in [1], but since this paper is already so loaded with computations, we have refrained from doing so.

The article is organised as follows. In Section 1, we recall a few old results used in the later calculations. Section 2 contains some technical lemmas. Section 3 collects all we need to know about the Morava K-theories of groups of smaller order. Section 4 lists the 51 groups of order 32 and disposes of those whose Morava Ktheory is either in the literature or can easily be read off from known computations. Finally, Section 5 contains the remaining calculations.

[^0]This paper is very computational, and we found it hard to strike a balance between completeness and readability. We hope to have provided sufficent detail without placing an undue burden on the reader's patience.

1. Preliminaries

Our principal calculational tool shall be the Serre spectral sequence

$$
\begin{equation*}
E_{2}=H^{*}\left(B Q ; K^{*}(B H)\right) \Rightarrow K^{*}(B G) \tag{1.1}
\end{equation*}
$$

associated to a group extension $1 \rightarrow H \xrightarrow{i} G \xrightarrow{\pi} Q \rightarrow 1$ for K either integral Morava K-theory $\widetilde{K}(n)$ or its mod p version $K(n)$. Here $H^{*}\left(B Q ; K(n)^{*}(B H)\right)$ is the ordinary cohomology of Q with coefficients in the $\mathbb{F}_{p}[Q]$-module $K(n)^{*}(B H)$, the action of Q being induced by conjugation in G as usual. This module structure can be quite messy, even in the simplest cases, since it involves the formal group law. Recall that as any complex oriented cohomology theory, Morava K-theory comes equipped with a formal group law induced from the tensor product of line bundles; we shall write the formal sum as " $+_{K(n)}$ ".

This spectral sequence is, via π^{*}, a module over the Atiyah-Hirzebruch spectral sequence for $B Q$.

In [5], Igor Kriz proved a beautiful theorem about the Serre spectral sequence associated to fibrations over $B C_{p}$. This theorem is one of the few practical tools for calculation; Kriz used it to great effect to supply the first counterexample to the even degree conjecture. His result gives a useful criterion to decide whether a group G has even Morava K-theory.
Theorem 1.1 (Kriz [5]). Let G be a p-group and H a normal subgroup of index p with $K(n)^{\text {odd }}(B H)=0$. Then $K(n)^{\text {odd }}(B G)=0$ if and only if the integral Morava K-theory $\widetilde{K}(n)^{*}(B H)$ is a permutation module for the action of $G / H \cong C_{p}$.

For odd primes p, this condition is equivalent to saying that $K(n)^{*}(B G)$ is a permutation module, but for $p=2$ this is trivially false (all $\mathbb{F}_{2}\left[C_{2}\right]$-modules are permutation modules).

At the other extreme, one could use extensions with a trivial action, such as central extensions. This has the advantage of not needing to know the Morava Ktheory of the subgroup as a module for the quotient, which can be hard to determine, but the drawback is that the quotient is usually a large $(p$-)group, whose $\bmod p$ cohomology can be quite challenging. So one has to find one's way between two evils, and a combination of both strategies will often be our chosen line of attack.

We conclude the section with a list of nonabelian p-groups whose Morava Ktheory is known to be good.
Theorem 1.2 ([3, 4, 5, 11, 12, 13, 14, 15]). If G belongs to any of the following families of p-groups, then $K(n)^{\text {odd }}(B G)=0$:
(a) wreath products of the form $H \succ C_{p}$ with H good $[3,4]$;
(b) metacyclic p-groups [12];
(c) minimal non-abelian p-groups, i.e., groups all of whose maximal subgrous are abelian [13];
(d) groups of p-rank 2 [14];
(e) elementary abelian by cyclic groups, i.e., extensions $V \rightarrow G \rightarrow C$ with V elementary abelian and C cyclic $[15,5]$.

2. TECHNICAL LEMMAS

The first result describes the Morava K-theory of a central product of a 'good' group with an abelian group. Recall that a group G is called a central product of two subgroups P and Q if $P \cap Q$ contains a central subgroup Z of G such that G is isomorphic to the quotient of $P \times Q$ by the inclusion of Z via the diagonal. We denote the central product by $P \times{ }_{Z} Q$ or simply by $P \circ Q$.
Theorem 2.1. Let $G=H \circ C$ be a central product of H with a cyclic group $C \cong C_{p^{m}}$. If H has even Morava K-theory, then so does G.

Proof. This is an easy argument with the Rothenberg-Steenrod spectral sequence; alternatively, it follows from Theorem 1.1 and induction.

The theorem clearly generalises to groups where C is replaced by any finite abelian group.

Remark 2.2. It furthermore follows that the Serre spectral sequence for the extension $1 \rightarrow H \rightarrow G \rightarrow G / H \rightarrow 1$ is simple, by which we mean that the only differential is the one inherited from the Atiyah-Hirzebruch spectral sequence for G / H (there is indeed only one, since G / H is cyclic). On the other hand, the spectral sequence for the central extension

$$
1 \longrightarrow C \longrightarrow G \longrightarrow G / C \longrightarrow 1
$$

is not simple unless $G=H \times C$; there is not even reason to believe that G / H has even Morava K-theory.

The other technical result required is a lemma which, under favourable circumstances, describes the Serre spectral sequence associated to a group extension with a dihedral quotient; it is taken from [8].
Suppose G fits into an extension $1 \rightarrow N \rightarrow G \rightarrow D \rightarrow 1$, with D isomorphic to a dihedral 2-group. Assume further that the homomorphism $\psi: D \rightarrow \operatorname{Out}(N)$ defined by the extension is trivial and has a trivial (set theoretic) lift $\phi: D \rightarrow$ $\operatorname{Aut}(N)$. In other words, every element of D should have a preimage in G which centralises N.

Lemma 2.3. Let G be as above. Suppose that $K(n)^{*}(B N)$ is concentrated in even degrees, and that in the Serre spectral sequence

$$
E_{2}=H^{*}\left(B D ; \mathbb{F}_{2}\right) \otimes K(n)^{*}(B N) \Rightarrow K(n)^{*}(B G)
$$

all elements in $E_{4}^{0, *}$ are permanent cycles. Then $K(n)^{*}(B G)$ is concentrated in even degrees.

Proof. We first prove the statement when D has order 4; an integral variant of this case can be found in [10]. Consider the inverse images H of any $C_{2} \subset D_{4}$. Such H is either abelian or a central product, thus the associated Serre spectral sequence has only one differential $d_{2^{n+1}-1}=v_{n} Q_{n}$, see the remark above. This implies that the first potentially nontrivial differential has to be of the form $d_{3} z=\pi \bmod v_{n}$, where $\pi=x_{1}^{2} x_{2}+x_{1} x_{2}^{2} \in H^{*}\left(B D_{4} ; \mathbb{F}_{2}\right)=\mathbb{F}_{2}\left[x_{1}, x_{2}\right]$. Thus we obtain an isomorphism

$$
E_{4} \cong K \otimes \mathbb{F}_{2}\left[x_{1}, x_{2}\right] /(\pi) \oplus H \otimes \mathbb{F}_{2}\left[x_{1}, x_{2}\right]\{\pi\}
$$

where $K=\operatorname{Ker}\left(\left.d_{3}\right|_{K(n)^{*}(B N)}\right)$ and $H=H\left(K(n)^{*}(B N), \pi^{-1} d_{3}\right)$. By assumption on E_{4}, the next differential is $d_{2^{n+1}-1}=v_{n} Q_{n}$. For $M=H^{*}\left(B D_{4} ; \mathbb{F}_{2}\right)$ the $Q_{n^{-}}$ homology $H\left(M ; Q_{n}\right)$ is finite and even. Let $M^{\prime}=M\{\pi\}$ and $M^{\prime \prime}=M /(\pi)$.

The short exact sequence $0 \rightarrow M^{\prime} \rightarrow M \rightarrow M^{\prime \prime} \rightarrow 0$ gives rise to long exact sequences in Q_{n}-homology (one for each degree modulo $\left|v_{n}\right|$). The Q_{n}-homology of $M^{\prime \prime}$ is easily seen to be concentrated in even degrees at most 2^{n+1}. Since the map $H\left(M ; Q_{n}\right) \rightarrow H\left(M^{\prime} ; Q_{n}\right)$ is onto, all connecting homomorphisms are trivial, implying that $H\left(M^{\prime \prime} ; Q_{n}\right)$ is even and finite, too. This finishes the proof for this case.

Now let $D=\langle s, t| s^{2^{m}}=t^{2}=1$, tst $\left.=s^{-1}\right\rangle \cong D_{2^{m+1}}$ with $m>1$. Let η_{1}, η_{2} be the real representations defined by $\eta_{1}(s)=\eta_{2}(s)=-1, \eta_{1}(t)=1, \eta_{2}(t)=-1$, and $\Delta_{\mathbb{R}}$ the natural representation in $O(2)$. Then

$$
H^{*}\left(D ; \mathbb{F}_{2}\right) \cong \mathbb{F}_{2}\left[x_{1}, x_{2}, w_{2}\right] /\left(x_{1} x_{2}\right)
$$

with x_{1}, x_{2}, w_{2} the Euler classes of $\eta_{1}, \eta_{1}, \Delta_{\mathbb{R}}$, respectively, and $w_{1}:=w_{1}\left(\Delta_{\mathbb{R}}\right)=$ $x_{1}+x_{2}$. There are two conjugacy classes of maximal elementary abelian subgroups, represented (say) by K and T, both of rank two, and the maximal cyclic subgroup $C=\langle s\rangle$. The extension induced by the inclusion $C \subset D$ is a central product with simple Serre spectral sequence. Thus restricting to C and furthermore to K, T, applying the special case just proved, one sees that d_{3} is either trivial, or has image $\left(w_{1} w_{2}\right) \bmod v_{n}$. If d_{3} is trivial, we are done by the assumption on E_{4} and the fact that the Atiyah-Hirzebruch spectral sequence for the dihedral quotient produces a finite and even module, since D is a 'good' group. Otherwise, we have

$$
E_{4} \cong K \otimes M^{\prime \prime} \oplus H \otimes M^{\prime}
$$

where K and H are defined as before as kernel and homology of d_{3} and $\left(w_{1} w_{2}\right)^{-1} d_{3}$ on $K(n)^{*}(B N)$, respectively. Here $M^{\prime}=M\left\{w_{1} w_{2}\right\}$ and $M^{\prime \prime}=M /\left(w_{1} w_{2}\right)$, where $M=H^{*}\left(D ; \mathbb{F}_{2}\right)$ (note that $w_{1} w_{2}$ is not a zero divisor in $\left.M\right)$. The next differential being $d_{2^{n+1}-1}=v_{n} Q_{n}$, we need to calculate the Q_{n}-homology of M^{\prime} and $M^{\prime \prime}$. We claim

$$
H\left(M ; Q_{n}\right)=\mathbb{F}_{2}\left[x_{1}^{2}, x_{2}^{2}\right] /\left(x_{1}^{2} x_{2}^{2}, x_{2}^{2^{n+1}}, x_{2}^{2^{n+1}}\right) \otimes \mathbb{F}_{2}\left[w_{2}^{2}\right] /\left(w_{2}^{2^{n}}\right) \oplus \mathbb{F}_{2}\left[w_{2}^{2}\right]\left\{w_{2}^{2^{n}}, \zeta\right\}
$$

with $\zeta=\sum_{r=0}^{n} x_{1}^{2^{n+1}-2^{r+2}+1} w_{2}^{2^{r}} \in M$;

$$
\begin{aligned}
H\left(M^{\prime \prime} ; Q_{n}\right)= & \mathbb{F}_{2}\left[w_{2}\right]\left\{1, x_{1} w_{2}\right\} \oplus \mathbb{F}_{2}\left[x_{1}^{2}, x_{2}^{2}\right] /\left(x_{1}^{2} x_{2}^{2}, x_{2}^{2^{n+1}}, x_{2}^{2^{n+1}}\right) \\
H\left(M^{\prime} ; Q_{n}\right)= & \mathbb{F}_{2}\left[w_{2}^{2}\right]\left\{x_{1}^{2^{n+1}}, Q_{n}\left(x_{1} w_{2}\right), Q_{n} w_{2}\right\} \\
& \oplus \mathbb{F}_{2}\left\{x_{1}^{2 i} w_{2}^{2 k}, x_{2}^{2 j} w_{2}^{2 l} \mid 1 \leq i, j<2^{n}, 0 \leq k, l<2^{n-1}\right\}
\end{aligned}
$$

Assuming this calculation, one finds that the $E_{2^{n+1}}$-page

$$
E_{2^{n+1}} \cong K \otimes H\left(M^{\prime \prime} ; Q_{n}\right) \oplus H \otimes H\left(M^{\prime} ; Q_{n}\right)
$$

is still infinite, and there must be further differentials. The only way to arrive at a finite E_{∞}-page is when $x_{1} w_{2}$ and $Q_{n} w_{2}$ support differentials, and we obtain an E_{∞}-page concentrated in even degrees.

It remains to prove the claim on the Q_{n}-homologies. Recall $Q_{n}\left(x_{i}\right)=x_{i}^{2^{n+1}}$; using $S q^{1} w_{2}=w_{1} w_{2}$ one sees inductively $Q_{n} w_{2}=\sum_{r=0}^{n} w_{1}^{2^{n+1}-2^{r+2}+1} w_{2}^{2^{r}}$. Since $x_{1} w_{1}=x_{1}^{2}$, replacing w_{1} in this sum with x_{1} yields a cycle ζ for Q_{n}. Comparing coefficients one readily proves that the Q_{n}-cycles are given by

$$
\mathbb{F}_{2}\left[x_{1}^{2}, x_{2}^{2}, w_{2}^{2}\right] /\left(\left(x_{1} x_{2}\right)^{2}\right)\left\{1, Q_{n} w_{2}\right\} \oplus \mathbb{F}_{2}\left[w_{2}^{2}\right]\{\zeta\}
$$

(note $x_{1}^{2} \zeta=x_{1}^{2} Q_{n} w_{2}$ and $x_{2}^{2} \zeta=0$). Clearly the image of Q_{n} in odd degrees is given by $\mathbb{F}_{2}\left[x_{1}^{2}, x_{2}^{2}, w_{2}^{2}\right] /\left(\left(x_{1} x_{2}\right)^{2}\right)\left\{Q_{n} w_{2}\right\}$. Furthermore, all classes $x_{i}^{2 k+2} w_{2}^{2 m}$ with $k+2 m \geq 2^{n+1}$ are also in the image; the first claim follows.

For $M^{\prime \prime}$ the calculation is much simpler: modulo $w_{1} w_{2}$, one has

$$
Q_{n}\left(w_{2}\right)=\sum_{r=0}^{n} w_{1}^{2^{n+1}-2^{r+1}+1} w_{2}^{2^{r}}=0, \quad Q_{n}\left(x_{1} w_{2}\right)=0
$$

giving

$$
H\left(M^{\prime \prime} ; Q_{n}\right)=\mathbb{F}_{2}\left[w_{2}\right]\left\{1, x_{1} w_{2}\right\} \oplus \mathbb{F}_{2}\left[x_{1}^{2}, x_{2}^{2}\right] /\left(x_{1}^{2} x_{2}^{2}, x_{2}^{2^{n+1}}, x_{2}^{2^{n+1}}\right)
$$

For M^{\prime}, one could either do this directly, or, since we have calculated $H\left(M ; Q_{n}\right)$, by means of the short exact sequence of Q_{n}-modules $0 \rightarrow M^{\prime} \rightarrow M \rightarrow M^{\prime \prime} \rightarrow 0$ and the associated long exact sequence(s)

$$
\cdots \rightarrow H^{s}\left(M^{\prime} ; Q_{n}\right) \xrightarrow{\iota} H^{s}\left(M ; Q_{n}\right) \xrightarrow{\kappa} H^{s}\left(M^{\prime \prime} ; Q_{n}\right) \xrightarrow{\delta} H^{s+\left|Q_{n}\right|}\left(M^{\prime} ; Q_{n}\right) \rightarrow \cdots .
$$

We need to determine δ and κ. The formulas for the action of Q_{n} give

$$
\begin{aligned}
\delta\left(x_{i}^{2 k}\right) & =\delta\left(w_{2}^{2 l}\right)=0, \\
\delta\left(w_{2}^{2 k+1}\right) & \left.=w_{2}^{2 k} Q_{n} w_{2} \quad \text { (note that } Q_{n} w_{2} \text { is not a boundary in } M^{\prime}\right), \\
\delta\left(x_{1} w_{2}^{2 k}\right) & =x_{1}^{2^{n+1}} w_{2}^{2 k}, \quad \delta\left(x_{1} w_{2}^{2 k+1}\right)=Q_{n}\left(x_{1} w_{2}\right) w_{2}^{2 k}=\sum_{r=1}^{n} x_{1}^{2^{n+1}-2^{r+1}+2} w_{2}^{2^{r}+2 k} .
\end{aligned}
$$

Reduction modulo $w_{1} w_{2}$ gives

$$
\operatorname{Ker}(\kappa)=\mathbb{F}_{2}\left\{x_{1}^{2 i} w_{2}^{2 k}, x_{2}^{2 j} w_{2}^{2 l} \mid 1 \leq i, j<2^{n}, 0 \leq k, l<2^{n-1}\right\}
$$

Splitting the long exact homology sequences into short exact sequences thus yields an additive isomorphism

$$
\begin{aligned}
H\left(M^{\prime} ; Q_{n}\right) \cong & \mathbb{F}_{2}\left[w_{2}^{2}\right]\left\{x_{1}^{2^{n+1}}, Q_{n}\left(x_{1} w_{2}\right), Q_{n} w_{2}\right\} \\
& \oplus \mathbb{F}_{2}\left\{x_{1}^{2 i} w_{2}^{2 k}, x_{2}^{2 j} w_{2}^{2 l} \mid 1 \leq i, j<2^{n}, 0 \leq k, l<2^{n-1}\right\}
\end{aligned}
$$

Corollary 2.4. Suppose in addition that all elements in $E_{4}^{0, *}$ are restrictions of good elements of $K(n)^{*}(B G)$. Then $K(n)^{*}(B G)$ is good.

Proof. This is a consequence of the following facts: (i) the x_{i}^{2} are clearly represented by Euler classes of one-dimensional complex representations of G; (ii) there is an extension problem identifying w_{2} as a polynomial in elements of $E_{4}^{0, *}$: this can be seen either by restriction to subgroups, or by appealing to the extension class in (ordinary) cohomology.

Finally, we need one more fact from the wreath product calculation.
Lemma 2.5 ([3]). Let $G=H \imath C_{2}$ where H has even Morava K-theory. The Serre spectral sequence of the extension

$$
\begin{equation*}
1 \longrightarrow H \times H \longrightarrow G \longrightarrow C_{2} \longrightarrow 1 \tag{2.1}
\end{equation*}
$$

has only one differential $d_{2^{n+1}-1}$ (i.e., is simple). More precisely, if $K(n)^{*}(B H \times$ $H) \cong K(n)^{*}(B H) \otimes_{K(n)^{*}} K(n)^{*}(B H)=F \oplus T$ is the decomposition into free and
trivial summands, then $F^{C_{2}}$ and T are in the image of restriction from G and thus consist of permanent cycles.

3. Groups of smaller order

The later sections require a few results about smaller groups, in particular concerning the behaviour of certain spectral sequences. The first observation is that all groups of order at most 16 have even Morava K-theory; this follows from the results quoted in the previous section: the only nonabelian groups of order 8 are D_{8} and Q_{8}, and there are 11 nonabelian groups of order 16 , namely
(a) $D_{8} \times C_{2}, Q_{8} \times C_{2}$,
(b) D_{16}, Q_{16}, the semidihedral group $S D_{16}$, the quasidihedral group $Q D_{16}$, which are metacyclic,
(c) the central product $C_{4} \circ D_{8}$, also known as almost extraspecial group,
(d) $H_{1}=\left\langle g_{1}, g_{2}, g_{3} \mid g_{1}^{4}=g_{2}^{2}=g_{3}^{2}=\left[g_{1}, g_{2}\right]=\left[g_{2}, g_{3}\right]=1, g_{3} g_{1} g_{3}=g_{1} g_{2}\right\rangle \cong$ $\left(C_{4} \times C_{2}\right) \rtimes C_{2}$
(e) $H_{2}=\left\langle g_{1}, g_{2} \mid g_{1}^{4}=g_{2}^{4}=1, g_{2}^{-1} g_{1} g_{2}=g_{1}^{-1}\right\rangle \cong C_{4} \rtimes C_{4}$.

The groups H_{1}, H_{2} (numbers 9 and 10 in the Hall-Senior list) are minimal nonabelian 2-groups. Although we already know they are both 'good', we shall later use specific calculations for their Morava K-theoies.
H_{1} (also known as $16 \Gamma_{2} c$) has a rank 3 elementary abelian subgroup $E=$ $\left\langle g_{1}^{2}, g_{2}, g_{3}\right\rangle$, and we consider the corresponding extension

$$
\begin{equation*}
1 \longrightarrow E \longrightarrow H_{1} \longrightarrow C_{2} \longrightarrow 1 \tag{3.1}
\end{equation*}
$$

with associated Serre spectral sequence $E_{2}=H^{*}\left(B C_{2} ; K(n)^{*}(B E)\right)$.
Lemma 3.1. The Serre spectral sequence for the extension (3.1) is simple.
Proof. This is very similar to the wreath product calculation 2.5. Let $\eta_{1}, \eta_{2}, \eta_{3}$ be the linear characters of E with $\eta_{1}\left(g_{1}^{2}\right)=\eta_{2}\left(g_{2}\right)=\eta_{3}\left(g_{3}\right)=-1$ and $\eta_{i}=1$ on the other generators. Then $\eta_{i}^{g_{1}}=\eta_{i}$ for $i=1,3$ and $\eta_{2}^{g_{1}}=\eta_{1} \eta_{2}$. Furthermore, η_{3} extends to a character γ of $H=H_{1}$. Set $y_{i}=c_{1}\left(\eta_{i}\right)$, then g_{1} acts trivially on y_{1}, y_{3}, whereas $g_{1}^{*}\left(y_{2}\right)=y_{1}+_{K(n)} y_{2}$. Thus $K(n)^{*}(B E) \cong M \otimes K(n)^{*}\left[y_{3}\right] /\left(y_{3}^{2^{n}}\right)$ where M is the module for the switch action as in the wreath product calculation. Clearly $y_{3}=\operatorname{Res}_{E}^{H} c_{1}(\gamma)$ is in the image of restriction from H, but so are $\left(1+g_{1}^{*}\right) y_{2}^{k}=$ $\operatorname{Res}_{E}^{H} \operatorname{Tr}_{E}^{H}\left(y_{2}^{k}\right)$ and $\left(y_{2} \cdot g_{1}^{*}\left(y_{2}\right)\right)^{k}=\operatorname{Res}_{E}^{H}\left(c_{2}\left(\operatorname{Ind}_{E}^{H} \eta_{2}\right)^{k}\right)$. Thus all invariants are permanent cycles, as they are in $\operatorname{Im}\left(\operatorname{Res}_{E}^{H}\right)$.
H_{2} has the index two subgroup $B=\left\langle g_{1}^{2}, g_{2}\right\rangle \cong C_{2} \times C_{4}$ with coresponding extension

$$
\begin{equation*}
1 \longrightarrow B \longrightarrow H_{2} \longrightarrow C_{2} \longrightarrow 1 \tag{3.2}
\end{equation*}
$$

and associated Serre spectral sequence $E_{2}=H^{*}\left(B C_{2} ; K(n)^{*}(B E)\right)$.
Lemma 3.2. The Serre spectral sequence for the extension (3.2) is simple.
Proof. Instead of using the switch action of C_{2} on $C_{2} \times C_{2}$, one can use the action of C_{2} on C_{4} by inversion to calculate $K(n)^{*}\left(B D_{8}\right)$; the invariants of the C_{2}-action on $K(n)^{*}\left(B C_{4}\right)=: M$ are again restrictions of Chern classes. If y denotes the Euler class of the representation η of B with $\eta\left(g_{1}^{2}\right)=-1$ and $\eta\left(g_{2}\right)=1$, then
$E_{2} \cong M \otimes K(n)^{*}[y] /\left(y^{2^{n}}\right)$. Since η extends to a complex character of H_{2}, the class y is in the image of restriction, whence all invariants are.

4. Groups of order 32- the easy part

There are 51 groups of order 32 , which we shall denote as $G_{1}-G_{51}$, the index referring to the Hall-Senior number of the group.
4.1. Groups $\mathbf{1 - 1 5}$. The first 7 groups are abelian, and the next 8 have an abelian factor. Thus their Morava K-theories are generated by Euler classes, and in particular concentrated in even degrees,
4.2. Groups 16-22. $G_{16}-G_{22}$ have a central quotient isomorphic to $C_{2} \times C_{2}$. Thus the technical Lemma 2.3 gives the result, provided one can check the condition on the E_{4}-page of the Serre spectral sequence. One only has to do this for G_{16} and G_{17}, since G_{18} and G_{20} are minimal non-abelian, whereas G_{19}, G_{21} and $G_{20} \cong Q D_{16}$ are split metacyclic.
G_{16} is a semidirect product $\left(C_{4} \times C_{4}\right) \rtimes C_{2}$ with presentation

$$
G_{16}=\left\langle a, b, c \mid a^{4}=b^{4}=c^{2}=[a, b]=[b, c]=1, c a c=a b^{2}\right\rangle ;
$$

the centre Z ist $\left\langle a^{2}, b\right\rangle$. Consider the Serre spectral sequence of the central extension $1 \rightarrow Z \rightarrow G_{16} \rightarrow V \rightarrow 1$ with $E_{2} \cong K(n)^{*}(B Z) \otimes H^{*}\left(V ; \mathbb{F}_{2}\right)$. Then $K(n)^{*}(B Z)$ is generated by the Euler classes of the two linear characters η, λ defined by $\eta\left(a^{2}\right)=$ $-1, \eta(b)=1$, and $\lambda\left(a^{2}\right)=1, \lambda(b)=i$, respectively. η extends to a representation $\tilde{\eta}$ of G_{16} by setting $\tilde{\eta}(a)=i$ and $\tilde{\eta}(c)=1$; therefore the Euler class of η is in the image of restriction and thus a permanent cycle. On the other hand, $z:=e(\lambda)$ is not a permanent cycle, but it suffices to see that z^{2} is. Let $\sigma=\operatorname{Ind}_{\langle a, b\rangle}^{G_{16}}(\mu)$ where $\mu(a)=1$ and $\mu(b)=i$. Then $\operatorname{Res}_{Z}^{G_{16}}(\sigma)=2 \lambda$, whence $\operatorname{Res}_{Z}^{g}(e(\sigma))=z^{2}$.

Secondly,

$$
G_{17}=\left\langle a, b, c \mid a^{8}=c^{2}=[a, c]=[a, b]=1, b^{2}=a^{2}, c b c=a^{4} b\right\rangle
$$

with centre $Z=\langle a\rangle$ cyclic of order 8 and central quotient $V \cong C_{2} \times C_{2}$. Consider as above the Serre spectral sequence of the central extension; this time $K(n)^{*}(B Z)$ is generated by the Euler class of a generator ρ of $R Z$. Clearly ρ extends to a representation $\tilde{\rho}$ of $\langle a, c\rangle$. Inducing $\tilde{\rho}$ up to G_{17} and restricting to the centre yields 2ρ, implying that $e(\rho)^{2}$ is a permanent cycle.
4.3. Groups 23-33. The groups $G_{23}-G_{33}$ all have centre of order 4 with quotient D_{8} - again a case for Lemma 2.3 and henceforth an easy exercise in representation theory. They also share the same Euler characteristic

$$
\chi_{n, 2}(G)=\frac{1}{2} 16^{n}+8^{n}-\frac{1}{2} 4^{n} .
$$

In fact, one has $G_{23}=C_{2} \times D_{16}, G_{24}=C_{2} \times S D_{16}, G_{25}=C_{2} \times Q_{16}, G_{26}=$ $C_{4} \circ D_{16}, G_{31}=C_{4} \backslash C_{2}, G_{33}=\left(C_{2} \times C_{2}\right) \backslash C_{2}$, and

$$
\begin{aligned}
& G_{27}=\left\langle a, b, c \mid a^{8}=b^{2}=c^{2}=[a, b]=[b, c]=1, c a c=a^{-1} b\right\rangle \\
& G_{28}=\left\langle a, b, c \mid a^{8}=b^{2}=[a, b]=[b, c]=1, c^{2}=a^{4}, c^{-1} a c=a^{3} b\right\rangle \\
& G_{29}=\left\langle a, b \mid a^{8}=b^{4}=1, b^{-1} a b=a^{-1}\right\rangle \\
& G_{30}=\left\langle a, b \mid a^{8}=b^{4}=1, b^{-1} a b=a^{3}\right\rangle \\
& G_{32}=\left\langle a, b, c \mid a^{8}=1, b=c^{2}, c^{4}=a^{4},[a, b]=[b, c]=1, c^{-1} a c=a^{3}\right\rangle
\end{aligned}
$$

Of these latter groups, G_{29} and G_{30} are split metacyclic and G_{32} is nonsplit metacyclic, so that leaves G_{27} and G_{28}. For both groups, a and b generate a maximal abelian subgroup $A \cong C_{8} \times C_{2}$. As prescribed by Lemma 2.3, we consider the Serre spectral sequence of the central extension

$$
1 \longrightarrow\left\langle a^{4}, b\right\rangle \longrightarrow G \longrightarrow\langle\bar{a}, c\rangle \longrightarrow 1
$$

with

$$
\begin{aligned}
E_{2} & =H^{*}\left(D_{8} ; K(n)^{*}(B Z)\right) \\
& \cong \mathbb{F}_{2}\left[x_{1}, w_{1}, w_{2}\right] /\left(x_{1}^{2}+x_{1} w_{1}\right) \otimes K(n)^{*}\left[z_{1}, z_{2}\right] /\left(z_{1}^{2^{n}}, z_{2}^{2^{n}}\right) .
\end{aligned}
$$

Here z_{1} and z_{2} are the Euler classes of λ_{1}, λ_{2} corresponding to a^{4} and b, respectively, while we keep the notation for $H^{*}\left(D_{8} ; \mathbb{F}_{2}\right)$ from Section 2.

Since $[G, G]=\left\langle a^{2} b\right\rangle \cong C_{4}$, we have a one-dimensional representation β of G with $\beta(b)=-1$ (and $\beta(a)=\beta(c)=1$); this restricts to λ_{2} on the centre. Thus z_{2} is a permanent cycle. Now let $A=\langle a, b\rangle \cong C_{8} \times C_{2}$ as above, and define $\rho \in R A$ by $\rho(a)=\exp (\pi i / 4)$ and $\rho(b)=1$. Then ρ^{c} is either ρ^{-1} (for G_{27}) or ρ^{3} (for G_{28}); in any case,

$$
\operatorname{Res}_{Z}^{G} \operatorname{Ind}_{A}^{G}(\rho)=\operatorname{Res}_{Z}^{A}\left(\rho+\rho^{c}\right)=2 \lambda_{1}
$$

so z_{1}^{2} is a permanent cycle, too.
4.4. Groups 34-37. Presentations of $G_{34}-G_{37}$ are as follows:

$$
\begin{aligned}
G_{34} & =\left\langle a, b, c \mid a^{4}=b^{4}=c^{2}=[a, b]=1, c a c=a^{-1}, c b c=b^{-1}\right\rangle \\
G_{35} & =\left\langle a, b, c \mid a^{4}=b^{4}=[a, b]=1, c^{2}=a^{2}, c a c=a^{-1}, c b c=b^{-1}\right\rangle \\
G_{36} & =\left\langle a, b, c \mid a^{4}=b^{4}=c^{2}=[b, c]=1, a^{-1} b a=b^{-1}, c a c=a^{-1}\right\rangle \\
G_{37} & =\left\langle a, b, c \mid a^{4}=c^{2}=d^{2}=[b, c]=1, d=[a, c], b^{2}=a^{2}, b a b^{-1}=a^{-1}\right\rangle
\end{aligned}
$$

All four groups have centre $Z \cong C_{2} \times C_{2}$ with quotient C_{2}^{3}, and Euler characteristic

$$
\chi_{n, 2}=\frac{1}{2} 16^{n}+8^{n}-\frac{1}{2} 4^{n} .
$$

G_{34} and G_{35} have the maximal abelian subgroup $A=\langle a, b\rangle \cong C_{4} \times C_{4}$, on which the quotient acts (diagonally) by inverting a and b. Since D_{8} could be written as a semidirect product $C_{4} \rtimes C_{2}$ with that action, Theorem 1.1 tells us that $M:=$ $\widetilde{K}(n)^{*}\left(B C_{4}\right)$ is a permutation module for the automorphism inverting the generator of the group, thus $\widetilde{K}(n)^{*}(B A) \cong M \otimes M$ is a permutation module, too. Theorem 1.1 again thus implies that G_{34} and G_{35} are both good.
G_{36} contains the maximal abelian aubgroup $A=\left\langle b, a^{2}, c\right\rangle \cong C_{4} \times C_{2} \times C_{2}$. From the relations one reads off that $\widetilde{K}(n)^{*}(B A) \cong M \otimes N$, where $N=\widetilde{K}(n)^{*}\left(B C_{2} \times C_{2}\right)$
with the switch action, so this is again a permutation module; the situation is similar for G_{37} and the maximal abelian subgroup $A=\langle b, c, d\rangle$.

4.5. Groups 38-41.

$$
\begin{aligned}
G_{38} & =\left\langle a, b, c \mid a^{4}=b^{2}=c^{4}=[a, b]=1, c a c^{-1}=a c^{2}, c b c^{-1}=a^{2} b\right\rangle \\
G_{39} & =\left\langle a, b, c \mid a^{4}=b^{4}=c^{2}=[a, b]=1, c a c=a^{3}, c b c=a^{2} b^{3}\right\rangle \\
G_{40} & =\left\langle a, b, c \mid a^{4}=b^{4}=1, c^{2}=b^{2},[a, b]=1, c^{-1} a c=a^{3}, c^{-1} b c=a^{2} b^{3}\right\rangle \\
G_{41} & =\left\langle a, b, c \mid a^{4}=b^{4}=c^{2}=[a, b]=1, c a c=a^{3} b^{2}, c b c=a^{2} b\right\rangle
\end{aligned}
$$

All these groups have centre $C_{2} \times C_{2}$ with quotient C_{2}^{3}, a unique index 2 abelian subgroup, and 14 conjugacy classes of elements. This suffices to conclude that they all have the same Euler characteristic

$$
\chi_{n, 2}=\frac{1}{2} 16^{n}+8^{n}-\frac{1}{2} 4^{n} .
$$

The calculation of their Morava K-theories appears to require new arguments and is thus deferred.
4.6. Groups 42 and 43. G_{42} and G_{43} are extraspecial and were dealt with in [10], using a variant of Lemma 2.3.

4.7. Groups 44-48.

$$
\begin{aligned}
G_{44} & =\left\langle a, b, c \mid a^{8}=b^{2}=c^{2}=[b, c]=1, b a b=a^{-1}, c a c=a^{5}\right\rangle \\
G_{45} & =\left\langle a, b, c \mid a^{8}=c^{2}=1, b^{2}=a^{4},[b, c]=1, b^{-1} a b=a^{-1}, c a c=a^{5}\right\rangle \\
G_{46} & =\left\langle a, b, c \mid a^{4}=b^{2}=c^{2}=[a, c]^{2}=1,[a,[a, c]]=[b, c]=1, b a b=a c\right\rangle \\
G_{47} & =\left\langle a, b, c \mid a^{8}=b^{2}=c^{2}=[b, c]=1, b a b=a c, c a c=a^{5}\right\rangle \\
G_{48} & =\left\langle a, b, c \mid a^{8}=c^{2}=1, b^{2}=a^{4},[b, c]=1, b^{-1} a b=a c, c a c=a^{5}\right\rangle
\end{aligned}
$$

For each group, the centre Z is C_{2} with quotient either $D_{8} \times C_{2}$ (for G_{44} and G_{45}) or $16 \Gamma_{2} c$, the group we called H_{1} in Section 3, in the other cases. All five groups have Euler characteristic

$$
\chi_{n, 2}=\frac{7}{4} 8^{n}-\frac{3}{4} 4^{n}
$$

G_{44}, G_{46} and G_{47} have a normal rank 3 elementary abelian subgroup with cyclic quotient, so they are covered by Theorem 1.2(e). Furthermore, G_{44} can be written as $\langle a, c\rangle \rtimes\langle b\rangle \cong Q D_{16} \rtimes C_{2}$, and G_{45} is a non-split version of that group, i.e., fits into an extension $1 \rightarrow Q D_{16} \rightarrow G_{45} \rightarrow C_{2} \rightarrow 1$ with the same action as for G_{44}. Similarly, G_{48} is a non-split version of $G_{47}=\langle a, c\rangle \rtimes\langle b\rangle \cong Q D_{16} \rtimes C_{2}$. Thus Theorem 1.1 implies that G_{45} and G_{48} are good, too.
4.8. Groups 49-51. G_{49} is dihedral, G_{50} semidihedral, and G_{51} a generalised quaternion group, hence already covered in the literature, e.g. by [14].

We have seen that the theory described in the previous sections covers 47 groups, leaving four to be calculated. Closer inspection also shows that the Morava Ktheory of those 47 groups is equidistributed (by which we mean $\operatorname{rank}_{K(n) *} K(n)^{2 i}(B G)=$ $\operatorname{rank}_{K(n)^{*}} K(n)^{0}(B G)-1$ for any $\left.i \not \equiv 0 \bmod \left|v_{n}\right|\right)$; we omit the details.

5. The REMAINING CASES

5.1. Group 38. The centre of G_{38} is $Z=\left\langle a^{2}, c^{2}\right\rangle \cong C_{2} \times C_{2}$. The representation ring has three generators α, β, γ of dimension one, inflated from G / Z, with $\alpha(a)=$ $-1, \alpha(b)=\alpha(c)=1, \beta(a)=\beta(c)=1, \beta(b)=-1$, and $\gamma(a)=\gamma(b)=1, \gamma(c)=-1$. Let $A=\left\langle a, b, c^{2}\right\rangle \cong C_{4} \times C_{2} \times C_{2}$ and $\lambda, \nu \in R A$ be defined by $\lambda(a)=i, \lambda(b)=$ $\lambda\left(c^{2}\right)=1$ and $\nu(a)=\nu(b)=1, \nu\left(c^{2}\right)=-1$. The irreducible representations of G_{38} are $\alpha^{r} \beta^{s} \gamma^{t}, r, s, t \in\{0,1\}$, and $\sigma=\operatorname{Ind}_{A}^{G}(\lambda), \alpha \sigma, \tau=\operatorname{Ind}_{A}^{G}(\nu), \beta \tau, v=\operatorname{Ind}_{A}^{G}(\lambda \nu)$, αv.
A is a maximal abelian subgroup, but we found neither the central extension $Z \rightarrow G \rightarrow G / Z$ nor $A \rightarrow G \rightarrow G / A$ suitable for calculation: in the spectral sequence for the central extension, the first differential d_{3} produces zero divisors, and for the second, we found no easy way to see that all invariants for the action of the quotient on $K(n)^{*}(B A)$ are permanent cycles, as the rank of $K(n)^{*}\left(B G_{38}\right)$ would suggest. Thus we consider the normal subgroup $E=\langle b\rangle \times Z$ with quotient $V \cong C_{2} \times C_{2}$ and consider the Serre spectral sequence of the extension

$$
\begin{equation*}
1 \longrightarrow E \longrightarrow G_{38} \longrightarrow V \longrightarrow 1 \tag{5.1}
\end{equation*}
$$

Define nontrivial characters $\xi, \eta, \zeta \in R E$ by the quotients $E /\left\langle a^{2}, b\right\rangle, E /\left\langle a^{2}, c^{2}\right\rangle$, and $E /\left\langle b, c^{2}\right\rangle$, respectively. Then we obtain the following restrictions:

G_{38}	α	β	γ	σ	τ	v
E	1	η	1	$(1+\eta) \zeta$	2ξ	$(1+\eta) \xi \zeta$

Let $x, y, z \in K(n)^{*}(B E)$ be the Euler classes of ξ, η, ζ, respectively. Then $K(n)^{*}(B E) \cong K(n)^{*}[x, y, z] /\left(x^{2^{n}}, y^{2^{n}}, z^{2^{n}}\right)$. Conjugation by a is trivial on $R E$, and $\eta^{c}=\eta, \xi^{c}=\xi$, but $\zeta^{c}=\eta \zeta$. This gives the following action of V on $K(n)^{*}(B E)$:

$$
a^{*} x=x, \quad a^{*} y=y, \quad a^{*} z=z, \quad c^{*} x=x, \quad c^{*} y=y, \quad c^{*} z=y+_{K(n)} z .
$$

From the above table we furthermore see $x^{2}=\operatorname{Res}_{E}^{G} c_{2}(\sigma)$.
The Serre spectral sequence has E_{2}-page

$$
E_{2}=H^{*}\left(B V ; K(n)^{*}(B E)\right)
$$

Write $M:=K(n)^{*}(B E)$, then $M=M^{\prime}[x] /\left(x^{2^{n+1}}\right)$, where we know M^{\prime} from the wreath product calculation 2.5. More precisely, M decomposes as $P \oplus T$, where P is a direct sum of $\frac{1}{2}\left(8^{n}-4^{n}\right)$ copies of $K(n)^{*}[V /\langle\bar{a}\rangle]$ and T a sum of 4^{n} trivial summands $K(n)^{*}[V / V]$.

Lemma 5.1. (a) $P^{\langle\bar{c}\rangle}$ consists of permanent cycles, and $P^{\langle\bar{c}\rangle}=F^{\langle\bar{c}\rangle}[x] /\left(x^{2^{n}}\right)$ where F is the free part of M^{\prime};
(b) $T=T^{\prime}[x] /\left(x^{2^{n}}\right)$, and $d_{3} x=x_{1}^{2} x_{2}+x_{1} x_{2}^{2}$ where $H^{*}\left(B V ; \mathbb{F}_{2}\right)=\mathbb{F}_{2}\left[x_{1}, x_{2}\right]$.

Proof. (a) follows from the fact that $\operatorname{Res}_{E}^{A}: K(n)^{*}(B A) \rightarrow K(n)^{*}(B E)$ is onto and the double coset formula, which gives $\operatorname{Res}_{E}^{G} \operatorname{Tr}_{A}^{G}=\operatorname{Res}_{E}^{A}\left(1+c^{*}\right)$.

For (b), note that $z\left(y+_{K(n)} z\right)=\operatorname{Res}_{E}^{G} c_{2}(\sigma)$, which implies that $T^{\prime} \subset \operatorname{Im}\left(\operatorname{Res}_{E}^{G}\right)$. On the other hand, x cannot be a permanent cycle for size reasons, and looking at the extensions induced by the three inclusions $C_{2} \subset V$ tells us that $d_{3} x$ has to restrict to zero on all of them: the corresponding subgroups of G_{38} are $C_{4} \times C_{2} \times C_{2}$, H_{1}, and $D_{8} \times C_{2}$, with simple spectral sequences according to 2.5 and 3.1.

The lemma implies

$$
E_{4}=P^{\langle\bar{c}\rangle} \otimes H^{*}\left(B\langle\bar{a}\rangle ; K(n)^{*}\right) \oplus T^{\prime}\left[x^{2}\right] /\left(x^{2^{n}}\right) \otimes \mathbb{F}_{2}\left[x_{1}, x_{2}\right] /\left(x_{1}^{2} x_{2}+x_{1} x_{2}^{2}\right)
$$

Since x^{2} is a permanent cycle, the next differential is Q_{n}, making $E_{2^{n+1}}$ even and finite (we know the Q_{n}-homology of $\mathbb{F}_{2}\left[x_{1}, x_{2}\right] /\left(x_{1}^{2} x_{2}+x_{1} x_{2}^{2}\right)$ from the first part of the proof of Lemma 2.3). This finishes the calculation for this group. A closer look at the distribution of generators shows that $K(n)^{*}\left(B G_{38}\right)$ is indeed equidistributed.
5.2. Group 39. Let $A=\langle a, b\rangle \subset G_{39}$, then G_{39} is the semidirect product $A \rtimes\langle c\rangle \cong$ $\left(C_{4} \times C_{4}\right) \rtimes C_{2}$. The first idea would be to use the extension $A \rightarrow G \rightarrow C_{2}$ and show that either all invariants $K(n)^{*}(B A)^{\langle c\rangle}$ are permanent cycles, or that $\widetilde{K}(n)^{*}(B A)$ contains no summand -1 . Instead, we turn to the central extension

$$
\begin{equation*}
1 \longrightarrow C \longrightarrow G_{39} \longrightarrow\langle\bar{a}\rangle \times Q \longrightarrow 1 \tag{5.2}
\end{equation*}
$$

with $C=\left\langle a^{2}\right\rangle \cong C_{2}$ and $Q=\langle\bar{b}, \bar{c}\rangle \cong C_{2} \times D_{8}$. Then

$$
\begin{aligned}
E_{2} & =K(n)^{*}(B C) \otimes H^{*}\left(B Q ; \mathbb{F}_{2}\right) \\
& \cong K(n)^{*}[z] /\left(z^{2^{n}}\right) \otimes \mathbb{F}_{2}\left[x_{1}, w_{1}, w_{2}\right] /\left(x_{1}^{2}+x_{1} w_{1}\right) \otimes \mathbb{F}_{2}[y]
\end{aligned}
$$

with x_{1}, w_{i} as before and $y \in H^{1}\left(B\langle\bar{a}\rangle ; \mathbb{F}_{2}\right)$.
Lemma 5.2. $d_{3} z=w_{1}^{2} y+w_{1} y^{2} \bmod v_{n}$.
Proof. Consider subgroups $Q_{j}<Q(j=1,2,3)$ and the corresponding induced extensions $C \rightarrow \widetilde{Q}_{i} \rightarrow Q_{i}$ in the following cases:

$$
\begin{array}{ll}
Q_{1}=\langle\bar{a}, \bar{b}\rangle \cong C_{2} \times C_{4}, & \widetilde{Q}_{1}=A \cong C_{4} \times C_{4}, \\
Q_{2}=\left\langle\bar{a}, \bar{b}^{2}, \bar{c}\right\rangle \cong C_{2} \times C_{2} \times C_{2}, & \widetilde{Q}_{2}=\langle a, c\rangle \times\left\langle b^{2}\right\rangle \cong D_{8} \times C_{2} \\
Q_{3}=\left\langle\bar{a}, \overline{b c}, \bar{b}^{2}\right\rangle \cong C_{2} \times C_{2} \times C_{2}, & \widetilde{Q}_{3}=\langle a, b c\rangle \times\left\langle b^{2}\right\rangle \cong Q_{8} \times C_{2} .
\end{array}
$$

Then one has, with y as above,

$$
\begin{aligned}
& H^{*}\left(Q_{1} ; \mathbb{F}_{2}\right) \cong \mathbb{F}_{2}[y] \otimes \Lambda(u) \otimes \mathbb{F}_{2}[v] \text { with }\langle u, \bar{a}\rangle=1, v=\beta_{2}(u), \\
& H^{*}\left(Q_{2} ; \mathbb{F}_{2}\right) \cong \mathbb{F}_{2}\left[y, t_{1}, t_{2}\right] \text { with } t_{1} \text { dual to } \bar{b}^{2} \text { and } t_{2} \text { dual to } \bar{c}, \\
& H^{*}\left(Q_{3} ; \mathbb{F}_{2}\right) \cong \mathbb{F}_{2}\left[y, t_{1}, t_{3}\right] \text { with } t_{1} \text { dual to } \bar{b}^{2} \text { and } t_{3} \text { dual to } \overline{b c .}
\end{aligned}
$$

For these extensions, the following table lists restrictions and $d_{3} z$, which we know (or can easily deduce) from previous calculations.

Q	x_{1}	y	w_{1}	w_{2}	$d_{3} z \bmod v_{n}$
Q_{1}	u	y	0	v	0
Q_{2}	0	y	t_{2}	$t_{1} t_{2}+t_{2}^{2}$	$y^{2} t_{2}+y t_{2}^{2}$
Q_{3}	t_{3}	y	t_{3}	$t_{1}^{2}+t_{1} t_{3}$	$t_{3}^{2} y+t_{3} y^{2}$

The claim follows.
Now let $b=w_{1}^{2} y+w_{1} y^{2}$, then $d_{3} z=b(1+U)$ for a unit U, since z is nilpotent, and

$$
E_{4} \cong K(n)^{*}\left[z^{2}\right] /\left(z^{2^{n}}\right) \otimes H^{*}\left(Q ; \mathbb{F}_{2}\right) /(b) ;
$$

note that b is not a zero divisor. Comparison to the induced extensions again shows that the next differential is $d_{2^{n+1}-1}=v_{n} Q_{n}$, so we have to determine the Q_{n}-homology of $H^{*}\left(Q ; \mathbb{F}_{2}\right) /(b)$. Note that $x_{1}^{2} y^{2}=x_{1} w_{1} y^{2}=x_{1} w_{1}^{2} y=x_{1}^{3} y$ etc. There is a splitting

$$
H^{*}\left(Q ; \mathbb{F}_{2}\right) /(b)=M \oplus N_{1} \oplus N_{2}
$$

with

$$
\begin{aligned}
M & =H^{*}\left(Q ; \mathbb{F}_{2}\right) /(b, y)=\mathbb{F}_{2}\left[x_{1}, w_{1}, w_{2}\right] /\left(x_{1}^{2}+x_{1} w_{1}\right) \\
N_{1} & =\mathbb{F}_{2}\left[w_{2}, y\right]\{y\} \oplus \mathbb{F}_{2}\left[w_{2}, y\right]\left\{w_{1} y\right\} \\
N_{2} & =\mathbb{F}_{2}\left[w_{2}, y\right]\left\{x_{1} y\right\} \oplus \mathbb{F}_{2}\left[w_{2}, x\right]\left\{x_{1}^{2} y\right\}
\end{aligned}
$$

and this splitting is respected by the action of Q_{n}.
Lemma 5.3. (a) Let $\zeta=\sum_{j=0}^{n} x_{1}^{2^{n+1}-2^{j+1}+1} w_{2}^{2^{j}}$. Then

$$
H\left(M ; Q_{n}\right)=\mathbb{F}_{2}\left[w_{2}^{2}\right]\{1, \zeta\} \oplus\left(\mathbb{F}_{2}\left\{x_{1}^{2 i}, w_{1}^{2 j} \mid 1 \leq i, j<2^{n}\right\} \otimes \mathbb{F}_{2}\left[w_{2}^{2}\right] /\left(w_{2}^{2^{n}}\right)\right)
$$

(b) Let $\vartheta_{1}=\left(y^{2}+w_{1} y\right) w_{2}$. Then

$$
\begin{aligned}
H\left(N_{1} ; Q_{n}\right)= & \mathbb{F}_{2}\left[w_{2}^{2}\right]\left\{y^{2 i}, y^{2 j} \vartheta_{1} \mid 1 \leq i<2^{n}, 0 \leq j<2^{n}\right\} \\
& \oplus \mathbb{F}_{2}\left[w_{2}^{2}\right] /\left(w_{2}^{2^{n}}\right) \otimes \mathbb{F}_{2}\left\{w_{1} y^{2 j+1} \mid 0 \leq j<2^{n}\right\} .
\end{aligned}
$$

(c) Let $\vartheta_{2}=x_{1}^{2} y+x_{1} y^{2}$ and $\vartheta_{3}=\vartheta_{2} w_{2}$. Then

$$
\begin{aligned}
H\left(N_{2} ; Q_{n}\right)= & \mathbb{F}_{2}\left[w_{2}^{2}\right]\left\{y^{2 i} \vartheta_{2}, y^{2 j} \vartheta_{3} \mid 0 \leq i<2^{n}-1,0 \leq j<2^{n}\right\} \\
& \oplus \mathbb{F}_{2}\left[w_{2}\right] /\left(w_{2}^{2^{n}}\right)\left\{x_{1}^{2 k+1} y \mid 1 \leq k<2^{n}\right\}
\end{aligned}
$$

Proof. The Q_{n}-homology of M we know from the proof of Lemma 2.3 (it is the Q_{n}-homology of $\left.H^{*}\left(D_{8} ; \mathbb{F}_{2}\right)\right)$. For (b), we first show that $H^{\text {odd }}\left(N_{1} ; Q_{n}\right)$ vanishes. Let

$$
X=\sum_{i=0}^{d} \lambda_{i} y^{2 d-2 i+1} w_{2}^{i}+\sum_{i=0}^{d-1} \mu_{i} y^{2 d-2 i} w_{1} w_{2}^{i}
$$

be a class in degree $2 d+1$. Then $Q_{n} X=0$ implies

$$
\begin{aligned}
0= & \sum_{i=0}^{d} \lambda_{i} y^{2^{n+1}+2 d-2 i} w_{2}^{i}+\lambda_{d} y\left(Q_{n} w_{2}\right)+\sum_{i=0}^{d-1} \mu_{i} y^{2 d-2 i} w_{1}^{2^{n+1}} w_{2}^{i} \\
& +\sum_{i=0}^{d-1}\left(\left(i \lambda_{i} y^{2 d-2 i+1}+i \mu_{i} w_{1} y^{2 d-2 i}\right) \sum_{j=0}^{n} w_{1}^{2^{n+1}-2^{j+1}+1} w_{2}^{2^{j}+i-1}\right) .
\end{aligned}
$$

The coefficients of $y^{l} w_{2}^{k}$ tell us that all λ_{i} must be zero, since the rest of the summands is divisible by w_{1}. So we only have to consider $\widetilde{N}_{1}=w_{1} N_{1}$. Let $\mathbb{F}_{2}[u, v]$ be the graded Q_{n}-module with u, v in degree 1 and $Q_{n} u=u^{2^{n+1}}, Q_{n} v=$ $v^{2^{n+1}}$. Then $\varphi(y):=u, \varphi\left(w_{1}\right):=u+v$ and $\varphi\left(w_{2}\right):=u v$ defines a monomorphism $\varphi: \widetilde{N}_{1} \rightarrow \mathbb{F}_{2}[u, v]$ of Q_{n}-modules. Since $H^{\text {odd }}\left(\mathbb{F}_{2}[u, v] ; Q_{n}\right)=0$, one also has $H^{2 d+1}\left(\widetilde{N}_{1} ; Q_{n}\right)=0$ for $2 d+1 \leq 2^{n+1}+1$. For larger d, comparing coefficients of w_{2}^{m} leads to a system of equations of the form

$$
\mu_{2 k}+\mu_{2 k-1}+\cdots+\mu_{2 k-2^{r}+1}+\cdots+\mu_{2 k-2^{n+1}+1}=0
$$

giving $Q_{n} X=0$ if and only if $X \in \operatorname{Im}\left(Q_{n}\right)$. One furthermore computes that the even degree cycles are

$$
Z^{\mathrm{ev}}=\mathbb{F}_{2}\left[w_{2}^{2}, y^{2}\right]\left\{w_{1} y, \vartheta_{1}\right\}
$$

Now $\mathbb{F}_{2}\left[w_{2}^{2}, y^{2}\right]\left\{y^{2^{n+1}}, y^{2^{n+1}} w_{1}\right\}$ clearly lies in the image of Q_{n}, as well as $y^{2^{n+1}} \vartheta_{1}=$ $Q_{n}\left(y \vartheta_{1}\right)$. Finally, $y w_{1} w_{2}^{2^{n}}=\sum_{k=1}^{n-1} y^{2^{n+1}-2^{k+1}+1} w_{1} w_{2}^{2^{k}}+y^{2^{n=1}-2} \vartheta_{1}+Q_{n}\left(y w_{2}\right)$; the claim follows.

The proof of (c) is a similar routine but tedious verification.
Thus $E_{2^{n+1}} \cong K(n)^{*}\left[z^{2}\right] /\left(z^{2^{n}}\right) \otimes\left(H_{\mathrm{inf}} \oplus H_{\text {fin }}\right)$ where
$H_{\mathrm{inf}}=\mathbb{F}_{2}\left[w_{2}^{2}\right]\left\{y^{2 i}, y^{2 j} \vartheta_{1}, y^{2 k} \vartheta_{2}, y^{2 l} \vartheta_{3}, \zeta \mid 0 \leq i, j<2^{n}, 0 \leq k<2^{n}-1,0 \leq l<2^{n}\right\}$
and

$$
H_{\mathrm{fin}}=\mathbb{F}_{2}\left[w_{2}^{2}\right] /\left(w_{2}^{2^{n}}\right)\left\{x_{1}^{2 i}, w_{1}^{2 j}, y^{2 k+1} w_{1}, x_{1}^{2 l+1} y \mid 1 \leq i, j, l<2^{n}, 0 \leq k<2^{n}\right\} .
$$

denote the infinite and the finite part of the Q_{n}-homology given by the lemma. All generators in the finite part are squares (recall $x_{1}^{3} y=x_{1}^{2} y^{2}$) and are represented by Chern classes of complex representations, namely the complexifications of the real representations used to define x_{1}, w_{1}, w_{2} and y. Furthermore, $H_{\text {fin }}$ sits in degrees less than 2^{n+2}, whence no further differential can hit this summand.

For the summand H_{inf}, notice first that w_{2}^{2} is represented by a Chern class and thus a permanent cycle. As modules over $\mathbb{F}_{2}\left[w_{2}^{2}\right]$, the even and the odd degree part have the same rank. Since E_{∞} has to be finite and ϑ_{1} is also a permanent cycle, all odd degree generators have to support a nontrivial differential and we are done.
5.3. Group 40. This group is a non-split version of G_{39}, i.e., G_{40} admits a nonsplit extension $A \rightarrow G_{40} \rightarrow C_{2}$ with $A=\langle a, b\rangle \cong C_{4} \times C_{4}$ and the same action of the quotient C_{2} as for $G_{39}=A \rtimes C_{2}$. Thus G_{40} has even Morava K-theory iff G_{39} does.
5.4. Group 41. This calculation is similar to the one for G_{38}, so we shall offer less detail. The centre of G_{41} is $Z=\left\langle a^{2}, b^{2}\right\rangle \cong C_{2} \times C_{2}$, and $A=\langle a, b\rangle \cong C_{4} \times C_{4}$ is an index 2 abelian subgroup. There are 14 irreducible complex representations, $\alpha^{r} \beta^{s} \gamma^{t}(r, s, t=0,1)$ of dimension 1 and $\sigma, \alpha \sigma, \tau, \beta \tau, v, \alpha v$ of dimension 2, defined as follows. α, β, γ factor through $G / Z \cong C_{2}^{3}$, with $\alpha(a)=-1, \beta(b)=-1, \gamma(c)=-1$, and $\alpha(b)=\alpha(c)=\beta(a)=\beta(c)=\gamma(a)=\gamma(b)=1$. Let $\lambda, \nu: A \rightarrow \mathbb{C}^{*}$ be given by $\lambda(a)=\nu(b)=i$ and $\lambda(b)=\nu(a)=1$, then $\sigma=\operatorname{Ind}_{A}^{G}(\lambda), \tau=\operatorname{Ind}_{A}^{G}(\nu)$, and $v=\operatorname{Ind}_{A}^{G}(\lambda \nu)$.

As before, we found it hard to show that the invariants $K(n)^{*}(B A)^{\langle c\rangle}$ are all in the image of restriction, and also the spectral sequence for the central extension posed problems with zero divisors. Thus let B be the normal subgroup $\left\langle a^{2}, b\right\rangle \cong$ $C_{2} \times C_{4}$ and $V=G / B=\langle\bar{a}, c\rangle \cong C_{2} \times C_{2}$, and consider the extension

$$
\begin{equation*}
1 \longrightarrow B \longrightarrow G_{41} \longrightarrow V \longrightarrow 1 \tag{5.3}
\end{equation*}
$$

Let ζ, ξ be defined by $\zeta\left(a^{2}\right)=-1, \xi(b)=i$, and $\zeta(b)=\xi\left(a^{2}\right)=1$, then ζ and ξ generate $R B$. Furthermore, $\xi^{c}=\xi, \zeta^{c}=\zeta \xi^{2}$, and \bar{a} acts trivially on $R B$. The restriction homomorphism $\operatorname{Res}_{B}^{G}: R G \rightarrow R B$ is given by

G_{41}	α	β	γ	σ	τ	v
B	1	ξ^{2}	1	$\left(1+\xi^{2}\right) \zeta$	2ξ	$\left(1+\xi^{2}\right) \zeta \xi$

Notice that if we artificially introduce $\eta:=\xi^{2}$, then this table, as well as the action of c, is identical to the case of G_{38}.

The Serre spectral sequence for (5.3) has

$$
E_{2}=H^{*}\left(B V ; K(n)^{*}(B B)\right)
$$

Set $x=c_{1}(\xi), z=c_{1}(\zeta)$, and $y=c_{1}\left(\xi^{2}\right)$. Then $y=[2] x=v_{n} x^{2^{n}}$, and the action of c is given by $c^{*}(x)=x$ and $c^{*}(z)=y+_{K(n)} z$. Thus as $K(n)^{*}[\langle c\rangle]$ module (but certainly not as an algebra), $K(n)^{*}(B B) \cong M_{1} \otimes M_{2}$ with $M_{1}=$ $K(n)^{*}[y, z] /\left(y^{2^{n}}, z^{2^{n}}\right)$ and $M_{2}=K(n)^{*}[x] /\left(x^{2^{n}}\right)$. The rest of the calculation now proceeds as in the case of G_{38}, with one minor difference: since the subgroups of G_{41} corresponding to the three inclusions $C_{2} \subset V$ are isomorhpic to $C_{4} \times C_{4}, H_{1}$, and H_{2}, we have to appeal to Lemma 3.2 in addition to Lemma 3.1 for the equivalent of Lemma 5.1 (b), i.e., the formula for the differential d_{3}.

References

[1] M. Bakuradze and V. Vershinin. Morava K-Theory rings for the dihedral, semidihedral and generalized quaternion groups. Proc. Amer. Math. Soc. 134 (2006), 3707-3714.
[2] M. Hall and J. K. Senior. The groups of order $2^{n}(n \leq 6)$. The Macmillan Co., New York; Collier-Macmillan, Ltd., London 1964.
[3] M. J. Hopkins, N. J. Kuhn, and D. C. Ravenel. Generalized group characters and complex oriented cohomology theories. J. Amer. Math. Soc. 13 (2000), 553-594.
[4] J. R. Hunton. The Morava K-theories of wreath products. Math. Proc. Camb. Phil. Soc. 107 (1990), 309-318.
[5] I. Kriz. Morava K-theory of classifying spaces: some calculations. Topology 36 (1997), 12471273.
[6] I. Kriz and K. Lee. Odd degree elements in the Morava $K(n)$ cohomology of finite groups. Topology Appl. 103 (2000), 229-241.
[7] B. Schuster. On the Morava K-theory of some finite 2-groups. Math. Proc. Camb. Phil. Soc. 121 (1997), 7-13.
[8] B. Schuster. Morava K-theory of classifying spaces. Habilitationsschrift, 2006. vi+124 pp. http://www.math.uni-wuppertal.de/~schuster/research/MKBG.pdf
[9] B. Schuster. $K(n)$ Chern approximations of some finite groups. Preprint, 2010. http://www.math.uni-wuppertal.de/~schuster/research/CBGex.pdf
[10] B. Schuster and N. Yagita. Morava K-theory of extraspecial 2-groups. Proc. Amer. Math. Soc. 132 (2004), no. 4, 1229-1239.
[11] M. Tezuka and N. Yagita. Cohomology of finite groups and Brown-Peterson cohomology. Algebraic Topology (Arcata, CA, 1986), 396-408, Lecture Notes in Math. 1370, Springer, Berlin, 1989.
[12] M. Tezuka and N. Yagita. Cohomology of finite groups and Brown-Peterson cohomology II. Homotopy theory and related topics (Kinosaki, 1988), 57-69. Lecture Notes in Math. 1418, Springer, Berlin, 1990.
[13] N. Yagita. Equivariant BP-cohomology for finite groups. Trans. Amer. Math. Soc. 317 (1990), no. 2, 485-499.
[14] N. Yagita. Cohomology for groups of $\operatorname{rank}_{p}(G)=2$ and Brown-Peterson cohomology. J. Math. Soc. Japan 45 (1993), no. 4, 627-644.
[15] N. Yagita. Note on BP-theory for extensions of cyclic groups by elementary abelian p-groups. Kodai Math. J. 20 (1997), no. 2, 79-84.

FB 7 Mathematik, Bergische Universität Wuppertal, Wuppertal, Germany
E-mail address: schuster@math.uni-wuppertal.de

[^0]: Date: November 23, 2010.
 2010 Mathematics Subject Classification. Primary 55R35, 55N20; Secondary 57T25.
 Key words and phrases. Morava K-theory, finite 2-groups.

