HIGHER v_{n} TORSION IN LIE GROUPS

John Hunton, Department of Mathematics and Computer Science, Leicester University, LE1 7RH, England.

Mamoru Mimura, Department of Mathematics, Faculty of Science, Okayama University, 3-1 Tsushima-naka, Okayama, Japan.
Tetsu Nishimoto, Department of Mathematics, Faculty of Science, Okayama University, 3-1 Tsushima-naka, Okayama, Japan.
Björn Schuster, The Fields Insitute, Toronto, Ontario, Canada M5T 3J1.

Abstract

We study the Morava K-theory of the exceptional Lie groups at the prime 2, and of certain projective Lie groups at a variety of primes.

$\S 1$ Introduction

In this paper we consider $K(n)^{*}(G)$, the Morava K-theory of certain Lie groups. Specifically, we compute $K(n)^{*}(G)$ for $G=G_{2}, F_{4}, E_{6}, E_{7}, E_{8}, P E_{7}$ and $\operatorname{PSp}(m)$ at the prime 2, and $P E_{6}$ and $P U(m)$ for odd primes. In particular, together with [Ho], [Y2] (see also [Hu]) and certain elementary observations, this completes the computations of the Morava K-theory of all the connected, simple, simply connected compact Lie groups with the sole exception the groups $\operatorname{Spin}(m)$ at the prime 2.

Our principal tool in every case is the Atiyah-Hirzebruch spectral sequence

$$
H^{*}\left(G ; K(n)^{*}\right) \Longrightarrow K(n)^{*}(G)
$$

If this spectral sequence has $E_{2 r\left(p^{n}-1\right)+2}^{* *}=E_{\infty}^{* *}$ for some positive integer r then the connective theory $k(n)^{*}(G)$ has at most $v_{n}{ }^{r}$ torsion. This observation was used in [Ka1] to show for odd primes that $k(n)_{*}(X)$ has at most $v_{n}{ }^{1}$ torsion for any simply connected H -space X. Our work thus examines the v_{n} torsion for the above mentioned simply connected groups at the prime 2 and for certain non-simply connected groups at general primes. As Kane observes, Hodgkin shows in [Ho] that $k(1)^{*}(G)$ has higher v_{1} torsion at the prime 2 for $G=E_{7}$ and E_{8}. Kane also notes in [Ka2] that there is $v_{1}{ }^{2}$ torsion at the prime 2 for $G=P E_{7}$; however, our results prove that in all other 2-primary cases $k(n)^{*}(G)$ has at most $v_{n}{ }^{1}$ torsion for $P S p(m)$, the exceptional groups and their projective counterparts, while similar
results also hold at the appropriate primes for various projective unitary groups (see $\S 6$ for details).

This paper is arranged as follows. In the next section we collect a number of common observations about our computations and methods. In $\S \S 3$ to 6 we then proceed to compute the spectral sequences for, respectively, the exceptional groups, their projective versions, the projective symplectic groups and the projective unitary groups. Precise statements of our results can be found in the relevant sections.

It may be of use to record at this point where the previous computations of $K(n)^{*}(G)$ for various Lie groups G may be found. The paper of Hodgkin [Ho] computes the integral complex K-theory of the connected, simple, simply connected compact Lie groups. These are all torsion free and as algebras are exterior of rank equal to the rank of the individual groups. From this the first Morava K-theory of such groups is easily deduced: $K(1)$ is of course the $\bmod p$ reduction of the Adams summand of p local complex K-theory. The complex K-theory of nonsimply connected Lie groups is studied in the work of Held and Suter [HS]. For the higher Morava K-theories, these are computed for all the connected, simple, simply connected compact Lie groups at odd primes by Yagita in [Y2], where computations of their $B P$ and $P(n)$ theories are also made. Some of the computations for the exceptionals at the prime 2 appeared in the first author's thesis [Hu], where the corresponding odd primary calculations are also repeated. For the non-exceptional groups, the $K(n)$-theory of $S O(2 m+1)$ is extensively studied in [Rao], and a few remarks on the behaviour of $K(n)^{*}(\operatorname{Spin}(m))$ can be found in $[\mathrm{Hu}]$. We see in the next section that the Morava K-theory of groups G with no torsion in $H^{*}(G ; \mathbf{Z})$ is essentially trivial.

§2 Methods

As remarked in the introduction, our main tool for studying $K(n)^{*}(G)$ is the AtiyahHirzebruch spectral sequence (AHSS)

$$
H^{*}\left(G ; K(n)^{*}\right) \Longrightarrow K(n)^{*}(G)
$$

The following four results provide the computational control we require.
Lemma 2.1 Let X be a finite $C W$ complex for which $H^{*}(X ; \mathbf{Z})$ is free of p torsion. Then the AHSS for $K(n)^{*}(X)$ collapses for all $n \in \mathbf{N}$.
This result is standard and follows, for example, from a simple rank counting argument.
Lemma 2.2 Let X be a finite $C W$ complex. If the AHSS for $K(n)^{*}(X)$ collapses for some $n \geqslant 1$, then so does that for $K(n+1)^{*}(X)$. Moreover, $\operatorname{rank}_{K(n) *} K(n)^{*}(X) \geqslant$ $\operatorname{rank}_{\mathbf{Q}} H^{*}(X ; \mathbf{Q})$.

Proof Rank counting shows that $\operatorname{rank}_{K(n)^{*}} K(n)^{*}(X) \leqslant \operatorname{rank}_{\mathbf{F}_{p}} H^{*}\left(X ; \mathbf{F}_{p}\right)$ with equality if and only if the AHSS for $K(n)^{*}(X)$ collapses. As X is finite, [Rav] (2.11) tells us

$$
\operatorname{rank}_{K(n)^{*}} K(n)^{*}(X) \leqslant \operatorname{rank}_{K(n+1)^{*}} K(n+1)^{*}(X)
$$

The first result now follows. The second, which provides a lower bound for all these ranks, follows for example by considering the Bockstein spectral sequence for $K(n)^{*}(X)$.

It is well known that the Atiyah-Hirzebruch spectral sequence for $K(n)^{*}(X)$ is a spectral sequence of $K(n)^{*}$ algebras. As the Morava K-theories all have Künneth isomorphisms, it is easy to check that the spectral sequence for $K(n)^{*}(G)$, where G is an associative H -space, is a spectral sequence of $K(n)^{*}$ Hopf algebras, the Hopf algebra structures on $E_{2}^{* *}$ and $E_{\infty}^{* *}$ being those given by or related to the Hopf algebra structures on $H^{*}\left(G ; K(n)^{*}\right)$ and $K(n)^{*}(G)$ respectively. Our third lemma provides a useful restriction on the behaviour of differentials in our spectral sequences (cf. Lemma 6.3 in [Br]).

Lemma 2.3 If $x \in E_{r}^{m, 0}$ and $d_{r}\left(x^{\prime}\right)=0$ for all $x^{\prime} \in E_{r}^{u, 0}$ with $u<m$, then $d_{r}(x)$ is primitive.
Proof Let us write ψ for the coproduct in $E_{r}^{* *}$ and $\bar{\psi}$ for the reduced coproduct given by

$$
\psi(x)=x \otimes 1+1 \otimes x+\bar{\psi}(x)
$$

Thus an element y is primitive if and only if $\bar{\psi}(y)=0$. Note that $\bar{\psi}(x)=\sum_{i} y_{i} \otimes z_{i}$ where the degrees of y_{i} and z_{i} are both strictly positive and strictly less than the degree of x. So, in the case hypothesised,

$$
\begin{aligned}
\psi d_{r}(x) & =\left(d_{r} \otimes d_{r}\right) \psi(x) \\
& =\left(d_{r} \otimes d_{r}\right)\left(x \otimes 1+1 \otimes x+\Sigma y_{i} \otimes z_{i}\right) \\
& =\left(d_{r} x\right) \otimes 1+1 \otimes\left(d_{r} x\right)+0 .
\end{aligned}
$$

This last result will be used many times to demonstrate the triviality of a differential in the AHSS. To show that a given differential d_{r} is trivial we examine the dimension of each $d_{r}\left(x_{i}\right)$ as x_{i} runs through the generators of $E_{r}^{* *}$. If there are no primitive elements in any of these dimensions then (2.3) shows that d_{r} must be zero.

Finally, we note a result of Yagita [Y1] identifying the first non-trivial differential in the Atiyah-Hirzebruch spectral sequence.

Lemma 2.4 The first non-trivial differential in the Atiyah-Hirzebruch spectral sequence for $K(n)^{*}(X)$ is $d_{2\left(p^{n}-1\right)+1}$ and is represented by a unit multiple of Milnor's operation Q_{n}.
Recall that the cohomology operation Q_{n} is defined inductively by

$$
\begin{array}{rll}
Q_{0}=\beta, & Q_{r}=\mathcal{P}^{p^{r-1}} Q_{r-1}-Q_{r-1} \mathcal{P}^{p^{r-1}} & \text { if } p>2 \\
Q_{0}=S q^{1}, & Q_{r}=S q^{2^{n}} Q_{r-1}+Q_{r-1} S q^{2^{n}} & \text { if } p=2 .
\end{array}
$$

$\S 3$ The exceptional groups

We begin our study with the compact, connected, simply connected, simple Lie groups. We recall that the only such groups to have 2 torsion in their integral cohomology are

$$
G_{2}, F_{4}, E_{6}, E_{7}, E_{8} \text { and } \operatorname{Spin}(m) \text { for } m \geqslant 7
$$

Thus, by (2.1), the Atiyah-Hirzebruch spectral sequence for every other compact, connected, simply connected, simple Lie group collapses and $k(n)^{*}(G)$ for such G contains no v_{n} torsion. We concentrate in this section on the remaining exceptional groups.

The following proposition, all of whose contents are to be found in [Mi], lists the ordinary mod 2 cohomology and Steenrod algebra action on the groups concerned. We use the notation that an element x_{r} lies in dimension r. For a group G we denote by $\mathcal{P}(G)$ a basis for the module of primitive elements.

Proposition 3.1

(a) $H^{*}\left(G_{2} ; \mathbf{F}_{2}\right)=\mathbf{F}_{2}\left[x_{3}\right] /\left(x_{3}{ }^{4}\right) \otimes \Lambda\left(x_{5}\right)$ and $\mathcal{P}\left(G_{2}\right)=\left\{x_{3}, x_{5}, x_{3}{ }^{2}\right\}$.
(b) $H^{*}\left(F_{4} ; \mathbf{F}_{2}\right)=\mathbf{F}_{2}\left[x_{3}\right] /\left(x_{3}{ }^{4}\right) \otimes \Lambda\left(x_{5}, x_{15}, x_{23}\right)$ and $\mathcal{P}\left(F_{4}\right)=\left\{x_{3}, x_{5}, x_{3}{ }^{2}, x_{15}, x_{23}\right\}$.
(c) $H^{*}\left(E_{6} ; \mathbf{F}_{2}\right)=\mathbf{F}_{2}\left[x_{3}\right] /\left(x_{3}{ }^{4}\right) \otimes \Lambda\left(x_{5}, x_{9}, x_{15}, x_{17}, x_{23}\right)$ and $\mathcal{P}\left(E_{6}\right)=\left\{x_{3}, x_{5}, x_{3}{ }^{2}\right.$, $\left.x_{9}, x_{17}\right\}$.
(d) $H^{*}\left(E_{7} ; \mathbf{F}_{2}\right)=\mathbf{F}_{2}\left[x_{3}, x_{5}, x_{9}\right] /\left(x_{3}{ }^{4}, x_{5}{ }^{4}, x_{9}{ }^{4}\right) \otimes \Lambda\left(x_{15}, x_{17}, x_{23}, x_{27}\right)$ and $\mathcal{P}\left(E_{7}\right)=$ $\left\{x_{3}, x_{5}, x_{3}{ }^{2}, x_{9}, x_{5}{ }^{2}, x_{17}, x_{9}{ }^{2}\right\}$. Furthermore, the reduced coproduct acts on the other generators as follows:

$$
\begin{aligned}
\bar{\psi}\left(x_{15}\right) & =x_{3}^{2} \otimes x_{9}+x_{5}^{2} \otimes x_{5} \\
\bar{\psi}\left(x_{23}\right) & =x_{3}^{2} \otimes x_{17}+x_{9}^{2} \otimes x_{5} \\
\bar{\psi}\left(x_{27}\right) & =x_{5}^{2} \otimes x_{17}+x_{9}^{2} \otimes x_{9}
\end{aligned}
$$

The Steenrod algebra acts by
$S q^{2} x_{3}=x_{5}$,
$S q^{1} x_{5}=x_{3}{ }^{2}, \quad S q^{4} x_{5}=x_{9}$,
$S q^{1} x_{9}=x_{5}{ }^{2}, \quad S q^{8} x_{9}=x_{17}$,
$S q^{1} x_{15}=x_{3}^{2} x_{5}^{2}, \quad S q^{2} x_{15}=x_{17}, \quad S q^{8} x_{15}=x_{23}, \quad S q^{12} x_{15}=x_{27}$,
$S q^{1} x_{17}=x_{9}{ }^{2}$,
$S q^{1} x_{23}=x_{3}{ }^{2} x_{9}{ }^{2}, \quad S q^{4} x_{23}=x_{27}$,
$S q^{1} x_{27}=x_{5}{ }^{2} x_{9}{ }^{2} \quad$ and all other operations are zero.
(e) $H^{*}\left(E_{8} ; \mathbf{F}_{2}\right)=\mathbf{F}_{2}\left[x_{3}, x_{5}, x_{9}, x_{15}\right] /\left(x_{3}{ }^{16}, x_{5}{ }^{8}, x_{9}{ }^{4}, x_{15}^{4}\right) \otimes \Lambda\left(x_{17}, x_{23}, x_{27}, x_{29}\right)$ and $\mathcal{P}\left(E_{8}\right)=\left\{x_{3}, x_{5}, x_{3}^{2}, x_{9}, x_{5}^{2}, x_{3}^{4}, x_{17}, x_{9}{ }^{2}, x_{5}^{4}, x_{3}{ }^{8}\right\}$. In this Hopf algebra the reduced coproduct acts on the other generators as

$$
\begin{aligned}
& \bar{\psi}\left(x_{15}\right)=x_{3}^{2} \otimes x_{9}+x_{5}^{2} \otimes x_{5}+x_{3}^{4} \otimes x_{3} \\
& \bar{\psi}\left(x_{23}\right)=x_{3}^{2} \otimes x_{17}+x_{9}^{2} \otimes x_{5}+x_{5}^{4} \otimes x_{3} \\
& \bar{\psi}\left(x_{27}\right)=x_{5}^{2} \otimes x_{17}+x_{9}^{2} \otimes x_{9}+x_{3}^{8} \otimes x_{3} \\
& \bar{\psi}\left(x_{29}\right)=x_{3}^{4} \otimes x_{17}+x_{5}^{4} \otimes x_{9}+x_{3}^{8} \otimes x_{5}
\end{aligned}
$$

The action of the Steenrod algebra is as follows.
$S q^{2} x_{3}=x_{5}$,
$S q^{1} x_{5}=x_{3}^{2}, \quad S q^{4} x_{5}=x_{9}$,
$S q^{1} x_{9}=x_{5}{ }^{2}, \quad S q^{8} x_{9}=x_{17}$,
$S q^{1} x_{15}=x_{3}^{2} x_{5}^{2}, \quad S q^{2} x_{15}=x_{17}, \quad S q^{8} x_{15}=x_{23}, \quad S q^{12} x_{15}=x_{27}$,
$S q^{1} x_{17}=x_{9}{ }^{2}$,
$S q^{14} x_{15}=x_{29}$,
$S q^{1} x_{23}=x_{3}{ }^{2} x_{9}{ }^{2}, \quad S q^{4} x_{23}=x_{27}, \quad S q^{6} x_{23}=x_{29}$,
$S q^{1} x_{27}=x_{5}^{2} x_{9}{ }^{2}, \quad S q^{2} x_{27}=x_{29}$,
$S q^{1} x_{29}=x_{15}^{2} \quad$ and all other operations are zero.

We consider now the computations of $K(n)^{*}(G)$ for these G at the prime 2 and for $n \geqslant 1$. The case of $n=1$ is essentially that of $\bmod 2 K$-theory, whose integral version has been fully calculated by Hodgkin, [Ho]. The integral K-groups $K^{*}(G)$ are torsion free and so the $K(1)$ result can be immediately read off. In all cases $K(1)^{*}(G)$ is an exterior algebra over $K(1)^{*}$ of rank equal to that of the Lie group in question; the Atiyah-Hirzebruch spectral sequence fails to collapse for any of the exceptionals. Moreover, as noted in the introduction, for $G=E_{7}$ or E_{8} there is more than one non-trivial differential in the spectral sequence for $K(1)^{*}(G)$ (indeed, both these cases have v_{1}^{2} torsion, but no v_{1}^{3} torsion). We turn our attention to the cases $K(n)^{*}(G)$ with $n \geqslant 2$.
Proposition 3.2 There are no non-trivial differentials in the spectral sequence for $K(2)^{*}(G)$ with $G=G_{2}, F_{4}$ or E_{6}. Hence, by (2.2), the sequences for $K(n)^{*}(G)$ collapse for these groups for all $n \geqslant 2$.
Proof The possible non-trivial differentials in the spectral sequence for $K(n)^{*}(G)$ are $d_{2 s\left(2^{n}-1\right)+1}$ with $s=1,2, \ldots$ Thus, for $n=2$ the differentials we must consider
are $d_{7}, d_{13}, d_{19}, \ldots$. Just as outlined at the end of $\S 2$, we examine for each group the ring generators, x_{r} say, of $E_{2}^{* *}=H^{*}\left(G ; \mathbf{F}_{2}\right) \otimes K(2)^{*}$ in order of increasing dimension and inspect whether there are any primitive elements firstly in dimensions $r+7$, then in dimensions $r+13$, and so on. In each case we find that the generators and primitive elements fail to occur in dimensions that would allow the possibility of a non-trivial differential and so the sequences all collapse by (2.3).

The same method of argument readily gives the following result for E_{7} and E_{8}.
Proposition 3.3 There are no non-trivial differentials in the spectral sequence for $K(4)^{*}(G)$ with $G=E_{7}$ or E_{8}. Hence, by (2.2), the sequences for $K(n)^{*}(G)$ collapse for these groups for all $n \geqslant 4$.

We consider next the cases of $K(2)^{*}\left(E_{7}\right)$ and $K(3)^{*}\left(E_{7}\right)$. Using (2.4) and the Steenrod action listed in (3.1) we compute the first potentially non-zero differentials in the corresponding Atiyah-Hirzebruch spectral sequences. We find
and

$$
\begin{aligned}
& Q_{2}\left(x_{i}\right)=\left\{\begin{aligned}
x_{5}{ }^{2} & \text { if } i=3, \\
0 & \text { otherwise },
\end{aligned}\right. \\
& Q_{3}\left(x_{i}\right)=\left\{\begin{aligned}
x_{9}{ }^{2} & \text { if } i=3, \\
0 & \text { otherwise. }
\end{aligned}\right.
\end{aligned}
$$

In the spectral sequence for $K(3)^{*}\left(E_{7}\right)$ the differentials we must consider are d_{15}, d_{29}, d_{43}, and so on. The differential d_{15} is given by the calculation of Q_{3} and we can compute $E_{16}^{* *}$ as

$$
E_{16}^{* *}=K(3)^{*}\left[x_{5}\right] /\left(x_{5}{ }^{4}\right) \otimes \Lambda\left(y_{6}, x_{9}, x_{15}, x_{17}, y_{21}, x_{23}, x_{27}\right)
$$

where y_{6} represents the old $x_{3}{ }^{2}$ and y_{21} stands for the old $x_{3} x_{9}{ }^{2}$. From (3.1)(d) we can compute that a basis for the module of primitive elements is given by $\left\{x_{5}, y_{6}, x_{9}, x_{5}^{2}, x_{17}, y_{21}\right\}$. Consequently, as in the proofs of (3.2) and (3.3), the differentials from this point on are all zero. Following the coproduct formulæ through these calculations yields the following summary of our results on $K(3)^{*}\left(E_{7}\right)$.
Theorem 3.4 The Atiyah-Hirzebruch spectral sequence for $K(3)^{*}\left(E_{7}\right)$ at the prime 2 has only one non-trivial differential, namely d_{15}. The E_{∞}-term has algebra structure

$$
K(3)^{*}\left[x_{5}\right] /\left(x_{5}^{4}\right) \otimes \Lambda\left(y_{6}, x_{9}, x_{15}, x_{17}, y_{21}, x_{23}, x_{27}\right)
$$

in which the classes $x_{5}, y_{6}, x_{9}, x_{17}$ and y_{21} are primitive and the reduced coproduct on the remaining generators acts by

$$
\begin{aligned}
& \bar{\psi}\left(x_{15}\right)=y_{6} \otimes x_{9}+x_{5}^{2} \otimes x_{5}, \\
& \bar{\psi}\left(x_{23}\right)=y_{6} \otimes x_{17} \\
& \bar{\psi}\left(x_{27}\right)=x_{5}^{2} \otimes x_{17} .
\end{aligned}
$$

Turning to the case of $K(2)^{*}\left(E_{7}\right)$, the differentials in question are now d_{7}, d_{13}, d_{19}, d_{25}, and so on. Calculating the operation Q_{2} we compute the E_{8}-term as

$$
\begin{equation*}
K(2)^{*}\left[x_{9}\right] /\left(x_{9}^{4}\right) \otimes \Lambda\left(x_{5}, y_{6}, y_{13}, x_{15}, x_{17}, x_{23}, x_{27}\right) \tag{3.5}
\end{equation*}
$$

where y_{6} once again represents the old $x_{3}{ }^{2}$ and y_{13} represents $x_{3} x_{5}{ }^{2}$. The elements $\left\{x_{5}, y_{6}, x_{9}, y_{13}, x_{17}, x_{9}{ }^{2}\right\}$ provide a basis for the module of primitives. At this point we find that the differential d_{13} is potentially non-zero on the element x_{5}, perhaps sending it to $v_{n}{ }^{2} x_{9}{ }^{2}$.
Lemma 3.6 The differential d_{13} is trivial.
Proof Note that whether $d_{13}\left(x_{5}\right)$ is trivial or not, d_{13} must act trivially on all the generators other than x_{5} : if $d_{13}\left(x_{5}\right)=0$ then d_{13} is zero everywhere by consideration of the primitives as before, while if $d_{13}\left(x_{5}\right) \neq 0$ then there can be no more differential action in the spectral sequence since

$$
\operatorname{rank}_{K(2)^{*}} K(2)^{*}\left(E_{7}\right) \geqslant \operatorname{rank}_{\mathbf{Q}} H^{*}\left(E_{7} ; \mathbf{Q}\right)=2^{7}
$$

by (2.2) and the classical computations of the rational cohomology of Lie groups. So in particular, $d_{13}\left(x_{23}\right)=0$. Suppose $d_{13}\left(x_{5}\right)=v_{n}{ }^{2} x_{9}{ }^{2}$ and consider the coproduct and d_{13} on x_{23} :

$$
\begin{aligned}
0=\bar{\psi} d_{13}\left(x_{23}\right) & =d_{13} \bar{\psi}\left(x_{23}\right) \\
& =d_{13}\left(x_{3}{ }^{2} \otimes x_{17}+x_{9}{ }^{2} \otimes x_{5}\right) \\
& =v_{n}{ }^{2} \cdot x_{9}{ }^{2} \otimes x_{9}{ }^{2} .
\end{aligned}
$$

But of course $x_{9}{ }^{2} \otimes x_{9}{ }^{2}$ is not zero in this algebra and so $d_{13}\left(x_{5}\right)$ must be zero after all.

Repeated application of (2.3) now demonstrates that there are no more differentials in this spectral sequence and (3.4) gives the final E_{∞}-term for $K(2)^{*}\left(E_{7}\right)$.
Theorem 3.7 The Atiyah-Hirzebruch spectral sequence for $K(2)^{*}\left(E_{7}\right)$ at the prime 2 has only one non-trivial differential, namely d_{7}. The E_{∞}-term has algebra structure

$$
K(2)^{*}\left[x_{9}\right] /\left(x_{9}{ }^{4}\right) \otimes \Lambda\left(x_{5}, y_{6}, y_{13}, x_{15}, x_{17}, x_{23}, x_{27}\right)
$$

in which the classes $x_{5}, y_{6}, x_{9}, y_{13}$ and x_{17} are primitive and the reduced coproduct on the remaining generators acts by

$$
\begin{aligned}
\bar{\psi}\left(x_{15}\right) & =y_{6} \otimes x_{9}, \\
\bar{\psi}\left(x_{23}\right) & =y_{6} \otimes x_{17}+x_{9}{ }^{2} \otimes x_{5}, \\
\bar{\psi}\left(x_{27}\right) & =x_{9}{ }^{2} \otimes x_{9} .
\end{aligned}
$$

Next we turn to the case of E_{8}. By (3.3), we need only consider the cases $K(2)^{*}\left(E_{8}\right)$ and $K(3)^{*}\left(E_{8}\right)$; we begin with the latter. The following summarises the action of Milnor's operation Q_{3} on $H^{*}\left(E_{8} ; \mathbf{F}_{2}\right)$ and is calculated from the Steenrod action given in (3.1).
$\begin{array}{lll}Q_{3} x_{3}=x_{9}{ }^{2} & Q_{3} x_{5}=x_{5}{ }^{4} & Q_{3} x_{9}=x_{3}{ }^{8} \\ Q_{3} x_{15}=x_{15}{ }^{2}+x_{3}{ }^{10}+x_{5}{ }^{6} & Q_{3} x_{17}=0 & Q_{3} x_{23}=x_{5}{ }^{4} x_{9}{ }^{2} \\ Q_{3} x_{27}=x_{3}{ }^{8} x_{9}{ }^{2} & & Q_{3} x_{29}=x_{3}{ }^{8} x_{5}{ }^{4} .\end{array}$
We rechoose generators as follows:

$$
\begin{gathered}
y_{23}=x_{23}+x_{5} x_{9}{ }^{2} \quad y_{27}=x_{27}+x_{3}{ }^{9} \\
y_{29}=x_{29}+x_{5}^{4} x_{9} .
\end{gathered}
$$

Then

$$
H^{*}\left(E_{8} ; \mathbf{F}_{2}\right)=\mathbf{F}_{2}\left[x_{3}, x_{5}, x_{9}, x_{15},\right] /\left(x_{3}{ }^{16}, x_{5}{ }^{8}, x_{9}{ }^{4}, x_{15}^{4}\right) \otimes \Lambda\left(x_{17}, y_{23}, y_{27}, y_{29}\right)
$$

where

$$
\begin{array}{ll}
Q_{3} x_{3}=x_{9}{ }^{2} & Q_{3} x_{5}=x_{5}{ }^{4} \\
Q_{3} x_{9}=x_{3}{ }^{8} & Q_{3} x_{15}=x_{15}{ }^{2}+x_{3}{ }^{10}+x_{5}{ }^{6}
\end{array}
$$

and Q_{3} is zero on all other generators.
Consider the subalgebras

$$
\begin{aligned}
& A=\mathbf{F}_{2}\left[x_{3}, x_{5}, x_{9}\right] /\left(x_{3}{ }^{16}, x_{5}{ }^{8}, x_{9}{ }^{4}\right) \\
& B=A \otimes \mathbf{F}_{2}\left[x_{15}\right] /\left(x_{15}^{4}\right)
\end{aligned}
$$

and write d_{A} and d_{B} for the restriction of the differential Q_{3} to A and B respectively. If we put $y_{30}=x_{15}{ }^{2}+x_{5}{ }^{6}+x_{3}{ }^{10}$ then

$$
B=A \oplus A x_{15} \oplus A y_{30} \oplus A x_{15} y_{30} \quad \text { as } A \text { modules }
$$

Obviously, $d_{A}(A) \subset A, d_{B}\left(A x_{15} \oplus A y_{30}\right) \subset A x_{15} \oplus A y_{30}$ and $d_{B}\left(A x_{15} y_{30}\right) \subset$ $A x_{15} y_{30}$. Hence

$$
H(B)=H(A) \oplus H\left(A x_{15} \oplus A y_{30}\right) \oplus H\left(A x_{15} y_{30}\right)
$$

where

$$
H(A)=\mathbf{F}_{2}\left[w_{6}\right] /\left(w_{6}^{4}\right) \otimes \Lambda\left(w_{10}, w_{21}, w_{25}, w_{33}\right)
$$

Here, $w_{6}, w_{10}, w_{21}, w_{25}$ and w_{33} represent the old elements $x_{3}{ }^{2}, x_{5}{ }^{2}, x_{3} x_{9}{ }^{2}, x_{5}{ }^{5}$ and $x_{3}{ }^{8} x_{9}$ respectively.

Also, $H\left(A x_{15} y_{30}\right)=H(A) x_{15} y_{30}$ and $H\left(A x_{15} \oplus A y_{30}\right)=0$. Thus

$$
H(B)=H(A) \oplus H(A) x_{15} y_{30}
$$

where it is easily seen that $\left(x_{15} y_{30}\right)^{2}=0$. Therefore

$$
H(B)=\mathbf{F}_{2}\left[w_{6}\right] /\left(w_{6}^{4}\right) \otimes \Lambda\left(w_{10}, w_{21}, w_{25}, w_{33}, w_{45}\right)
$$

where $w_{45}=x_{15} y_{30}=x_{15}\left(x_{15}{ }^{2}+x_{5}{ }^{6}+x_{3}{ }^{10}\right)$.
Putting this all together, we have

$$
E_{16}^{* *}=K(3)^{*}\left[w_{6}\right] /\left(w_{6}^{4}\right) \otimes \Lambda\left(w_{10}, x_{17}, w_{21}, y_{23}, w_{25}, y_{27}, y_{29}, w_{33}, w_{45}\right)
$$

The next differentials to consider are d_{33}, d_{47} and so on, but these are all forced to be zero for dimensional reasons. Following the coproduct formulæ through these calculations yields the following summary of our results on $K(3)^{*}\left(E_{8}\right)$.
Theorem 3.8 The Atiyah-Hirzebruch spectral sequence for $K(3)^{*}\left(E_{8}\right)$ at the prime 2 has only one non-trivial differential, namely d_{15}. The E_{∞}-term has algebra structure

$$
K(3)^{*}\left[w_{6}\right] /\left(w_{6}{ }^{4}\right) \otimes \Lambda\left(w_{10}, x_{17}, w_{21}, y_{23}, w_{25}, y_{27}, y_{29}, w_{33}, w_{45}\right)
$$

in which the classes $w_{6}, w_{10}, x_{17}, w_{21}, w_{25}$ and w_{33} are primitive and the reduced coproduct on the remaining generators acts by

$$
\begin{array}{ll}
\bar{\psi}\left(y_{23}\right)=w_{6} \otimes x_{17} & \bar{\psi}\left(y_{27}\right)=w_{10} \otimes x_{17} \\
\bar{\psi}\left(y_{29}\right)=w_{6}{ }^{2} \otimes x_{17} & \bar{\psi}\left(w_{45}\right)=w_{33} \otimes w_{6}{ }^{2}
\end{array}
$$

Lastly, we consider the calculations for $K(2)^{*}\left(E_{8}\right)$. The Steenrod action on $H^{*}\left(E_{8} ; \mathbf{F}_{2}\right)$ given in (3.1) provides the following description of the action of Q_{2}, effectively the first non-zero differential in the Atiyah-Hirzebruch spectral sequence.
$Q_{2} x_{3}=x_{5}{ }^{2}$
$Q_{2} x_{5}=x_{3}{ }^{4}$
$Q_{2} x_{9}=0$
$Q_{2} x_{15}=x_{3}{ }^{4} x_{5}{ }^{2} \quad Q_{2} x_{17}=x_{3}{ }^{8}$
$Q_{2} x_{23}=x_{15}^{2}+x_{3}{ }^{10}+x_{3}{ }^{4} x_{9}{ }^{2}$
$Q_{2} x_{27}=x_{3}{ }^{8} x_{5}{ }^{2}$
$Q_{2} x_{29}=x_{3}{ }^{12}$.

We rechoose generators as follows:

\[

\]

Then

$$
\begin{aligned}
& H^{*}\left(E_{8} ; \mathbf{F}_{2}\right)=\mathbf{F}_{2}\left[x_{3}, x_{5}, x_{9}, y_{15}, y_{17}\right] /\left(x_{3}^{16}, x_{5}^{8}, x_{9}{ }^{4}, y_{15}^{4}, y_{17}^{2}+x_{3}{ }^{8} x_{5}{ }^{2}\right) \\
& \otimes \Lambda\left(y_{23}, y_{27}, y_{29}\right)
\end{aligned}
$$

where

$$
\begin{aligned}
& Q_{2} x_{3}=x_{5}{ }^{2} \quad Q_{2} x_{5}=x_{3}^{4} \quad Q_{2} y_{23}=y_{15}^{2} \\
& Q_{2} x_{9}=Q_{2} y_{15}=Q_{2} y_{17}=Q_{2} y_{27}=Q_{2} y_{29}=0 .
\end{aligned}
$$

Consider the subalgebra

$$
A=\mathbf{F}_{2}\left[x_{3}, x_{5}, y_{17}\right] /\left(x_{3}^{16}, x_{5}^{8}, y_{17}^{2}+x_{3}{ }^{8} x_{5}^{2}\right),
$$

with the differential $d_{A}: A \longrightarrow A$ defined by

$$
d_{A} x_{3}=x_{5}{ }^{2} \quad d_{A} x_{5}=x_{3}{ }^{4} \quad d_{A} y_{17}=0 .
$$

This gives $H(A)=\Lambda\left(w_{6}, y_{17}, w_{33}, w_{41}\right)$, where $w_{6}=x_{3}{ }^{2}, w_{33}=x_{3} x_{5}{ }^{6}$ and $w_{41}=$ $x_{3}{ }^{12} x_{5}$.

We also consider

$$
B=\mathbf{F}_{2}\left[y_{15}\right] /\left(y_{15}^{4}\right) \otimes \Lambda\left(y_{23}\right)
$$

with the differential $d_{B}: B \longrightarrow B$ defined by

$$
d_{B} y_{15}=0 \quad d_{B} y_{23}=y_{15}^{2}
$$

Then $H(B)=\Lambda\left(y_{15}, w_{53}\right)$, where $w_{53}=y_{15}{ }^{2} y_{23}$.
Thirdly, we consider

$$
C=\mathbf{F}_{2}\left[x_{9}\right] /\left(x_{9}{ }^{4}\right) \otimes \Lambda\left(y_{27}, y_{29}\right) .
$$

This has the trivial differential $d_{C}=0$ and so $H(C)=C$.
Thus the E_{8}-term of the Atiyah-Hirzebruch spectral sequence is given by

$$
\begin{aligned}
E_{8}^{* *} & =K(2)^{*} \otimes H(A) \otimes H(B) \otimes H(C) \\
& =K(2)^{*}\left[x_{9}\right] /\left(x_{9}^{4}\right) \otimes \Lambda\left(w_{6}, y_{15}, y_{17}, y_{27}, y_{29}, w_{33}, w_{41}, w_{53}\right)
\end{aligned}
$$

The module of primitives is generated by the set $\left\{y_{6}, x_{9}, y_{17}, x_{9}{ }^{2}, y_{29}, w_{33}, w_{41}, w_{53}\right\}$.
The next differentials to consider are of the form $d_{6 k+1}$ for $k=2,3,4, \ldots$. Examination of the degrees of the generators and the primitive elements shows all these must be zero, again using (2.3). Thus the spectral sequence collapses from the E_{8}-term onwards. Following the coproduct formulæ through the above calculations yields the following summary of our results on $K(2)^{*}\left(E_{8}\right)$.
Theorem 3.9 The Atiyah-Hirzebruch spectral sequence for $K(2)^{*}\left(E_{8}\right)$ at the prime 2 has only one non-trivial differential, namely d_{7}. The E_{∞}-term has the algebra structure

$$
K(2)^{*}\left[x_{9}\right] /\left(x_{9}{ }^{4}\right) \otimes \Lambda\left(w_{6}, y_{15}, y_{17}, y_{27}, y_{29}, w_{33}, w_{41}, w_{53}\right)
$$

in which the classes $w_{6}, x_{9}, y_{17}, y_{29}, w_{33}, w_{41}$ and w_{53} are primitive and the reduced coproduct on the remaining generators acts by

$$
\bar{\psi}\left(y_{15}\right)=w_{6} \otimes x_{9} \quad \text { and } \quad \bar{\psi}\left(y_{27}\right)=x_{9}{ }^{2} \otimes x_{9} .
$$

The table below summarises our results on the $K(n)$-theory of the exceptional Lie groups for the prime 2. The factors represent the heights of individual generators in the relevant E_{∞}-terms and the bold face figures indicate that the respective spectral sequences fail to collapse.

Table (3.10)
Ranks of $K(n)^{*}(G)$ over $K(n)^{*}$

Group	dim	p	$K(1)$	$K(2)$	$K(3)$	$K(n) n \geqslant 4$
G_{2}	14	2	$\mathbf{2}^{\mathbf{2}}$	$4 \cdot 2$	$4 \cdot 2$	$4 \cdot 2$
F_{4}	52	2	$\mathbf{2}^{\mathbf{4}}$	$4 \cdot 2^{3}$	$4 \cdot 2^{3}$	$4 \cdot 2^{3}$
E_{6}	78	2	$\mathbf{2}^{\mathbf{6}}$	$4 \cdot 2^{5}$	$4 \cdot 2^{5}$	$4 \cdot 2^{5}$
E_{7}	133	2	$\mathbf{2}^{\mathbf{7}}$	$\mathbf{4} \cdot \mathbf{2}^{\mathbf{7}}$	$\mathbf{4} \cdot \mathbf{2}^{\mathbf{7}}$	$4^{3} \cdot 2^{4}$
E_{8}	248	2	$\mathbf{2}^{\mathbf{8}}$	$\mathbf{4 \cdot \mathbf { 2 } ^ { \mathbf { 8 } }}$	$\mathbf{4} \cdot \mathbf{2}^{\mathbf{9}}$	$16 \cdot 8 \cdot 4^{2} \cdot 2^{4}$

$\S 4$ The projective exceptional groups

In this section we present calculations for the Morava K-theory of the projective groups $A d E_{6}=P E_{6}=E_{6} / \mathbf{Z}_{3}$ and $A d E_{7}=P E_{7}=E_{7} / \mathbf{Z}_{2}$. For $P E_{6}$ the only prime for which our results will differ from those for E_{6} is 3 , while for $P E_{7}$ the only prime to consider is 2 . We note the existence of fibrations

$$
E_{6} \longrightarrow P E_{6} \longrightarrow B \mathbf{Z}_{3} \quad \text { and } \quad E_{7} \longrightarrow P E_{7} \longrightarrow \mathbf{R} P^{\infty}
$$

We shall need calculations of the ordinary cohomologies for these groups. The following proposition and (4.4) later on $P E_{7}$ provide the necessary detail; once again, the material can be found in the survey article [Mi].
Proposition $4.1 H^{*}\left(P E_{6} ; \mathbf{F}_{3}\right)=\mathbf{F}_{3}\left[x_{2}, x_{8}\right] /\left(x_{2}{ }^{9}, x_{8}{ }^{3}\right) \otimes \Lambda\left(x_{1}, x_{3}, x_{7}, x_{9}, x_{11}, x_{15}\right)$ and $\mathcal{P}\left(P E_{6}\right)=\left\{x_{1}, x_{2}, x_{2}{ }^{3}\right\}$. Furthermore, in this Hopf algebra the reduced coproduct acts on the other generators as follows:

$$
\begin{aligned}
& \bar{\psi}\left(x_{3}\right)=x_{2} \otimes x_{1}, \\
& \bar{\psi}\left(x_{7}\right)=x_{2}^{3} \otimes x_{1}, \\
& \bar{\psi}\left(x_{8}\right)=x_{2}{ }^{3} \otimes x_{2}, \\
& \bar{\psi}\left(x_{9}\right)=x_{2} \otimes x_{7}-x_{2}{ }^{3} \otimes x_{3}+x_{8} \otimes x_{1}+x_{2}{ }^{4} \otimes x_{1}, \\
& \bar{\psi}\left(x_{11}\right)=x_{2} \otimes x_{9}-x_{2}{ }^{2} \otimes x_{7}+x_{8} \otimes x_{3}-x_{2}{ }^{4} \otimes x_{3}+x_{8} x_{2} \otimes x_{1}-x_{2}{ }^{5} \otimes x_{1}, \\
& \bar{\psi}\left(x_{15}\right)=x_{2}{ }^{3} \otimes x_{9}+x_{8} \otimes x_{7}+x_{2}{ }^{6} \otimes x_{3}+x_{8} x_{2}^{3} \otimes x_{1} .
\end{aligned}
$$

The Steenrod operations β and \mathcal{P}^{1} act as follows.

```
\(\beta x_{1}=x_{2}\)
    \(\beta x_{3}=-x_{2}{ }^{2}\)
    \(\beta x_{7}=x_{8}\)
\(\beta x_{9}=x_{2} x_{8}\)
    \(\beta x_{11}=-x_{2}{ }^{6}-x_{2}{ }^{2} x_{8}\)
    \(\beta x_{15}=-x_{8}{ }^{2}\)
\(\mathcal{P}^{1} x_{2}=x_{2}{ }^{3}\)
    \(\mathcal{P}^{1} x_{3}=x_{7}\)
\(\mathcal{P}^{1} x_{8}=-x_{2}{ }^{6}\)
\(\mathcal{P}^{1} x_{11}=x_{15}\)
\(\beta x_{2}=\beta x_{8}=\mathcal{P}^{1} x_{1}=\mathcal{P}^{1} x_{7}=\mathcal{P}^{1} x_{9}=\mathcal{P}^{1} x_{15}=0\).
```

We now state our results on the Morava K-theory at the prime 3 of $P E_{6}$.
Theorem 4.2 The Atiyah-Hirzebruch spectral sequence for $K(n)^{*}\left(P E_{6}\right)$ collapses for $n \geqslant 2$.
Proof For $n=2$ the differentials in the AHSS are $d_{16 s+1}$, thus we must consider d_{17}, d_{33} and so on. However, as the largest primitive is of dimension 6 , none of these differentials can take primitive values and hence, by (2.3), must all be zero. The result for $K(n)^{*}\left(P E_{6}\right)$ for $n>2$ now follows by (2.2).

The calculation for $K(1)^{*}\left(P E_{6}\right)$ can be read off from the results of Held and Suter [HS] on the K-theory of $P E_{6}$. However, a direct calculation is possible using the methods developed here for the other Lie groups.
Theorem 4.3 The Atiyah-Hirzebruch spectral sequence for $K(1)^{*}\left(P E_{6}\right)$ at the prime 3 has only one non-trivial differential, namely d_{5}. The E_{∞}-term has algebra structure

$$
K(1)^{*}\left[x_{2}\right] /\left(x_{2}^{3}\right) \otimes \Lambda\left(y_{7}, y_{9}, y_{11}, w_{13}, y_{15}, w_{19}\right)
$$

in which the classes x_{2}, y_{7}, w_{13} and w_{19} are primitive and the reduced coproduct on the remaining generators acts by

$$
\begin{aligned}
& \bar{\psi}\left(y_{9}\right)=x_{2} \otimes y_{7} \\
& \bar{\psi}\left(y_{11}\right)=x_{2} \otimes y_{9}-x_{2}^{2} \otimes y_{7} \\
& \bar{\psi}\left(y_{15}\right)=-x_{2} \otimes w_{13}
\end{aligned}
$$

Proof We compute the first possible differential, d_{5}, by its association with Milnor's operation $Q_{1}=\mathcal{P}^{1} \beta-\beta \mathcal{P}^{1}$. This differential turns out to be non-zero.
$Q_{1} x_{1}=x_{2}{ }^{3}$
$Q_{1} x_{2}=0$
$Q_{1} x_{3}=x_{2}{ }^{4}-x_{8}$
$Q_{1} x_{7}=-x_{2}{ }^{6}$
$Q_{1} x_{8}=0$
$Q_{1} x_{9}=-x_{2}{ }^{7}+x_{2}^{3} x_{8}$
$Q_{1} x_{11}=x_{2}{ }^{8}+x_{2}{ }^{4} x_{8}+x_{8}{ }^{2}$
$Q_{1} x_{15}=-x_{2}{ }^{6} x_{8}$.

We make the following change of basis to allow simpler computation of the differential d_{5}. We replace the generators $x_{7}, x_{8}, x_{9}, x_{11}$ and x_{15} by the elements
$y_{7}=x_{7}+x_{1} x_{2}{ }^{3}$
$y_{8}=-x_{8}+x_{2}^{4}$
$y_{9}=x_{9}+x_{2}{ }^{3} x_{3}$
$y_{11}=x_{11}-x_{2}{ }^{4} x_{3}+x_{3} x_{8}$
$y_{15}=x_{15}+x_{2}{ }^{3} x_{9}$
for then we have

$$
Q_{1} x_{1}=x_{2}^{3}, Q_{1} x_{3}=y_{8}, \quad \text { and } Q_{1} \text { is trivial for all other generators. }
$$

Hence the E_{6}-term of the spectral sequence is given by the algebra

$$
K(1)^{*}\left[x_{2}\right] /\left(x_{2}^{3}\right) \otimes \Lambda\left(y_{7}, y_{9}, y_{11}, w_{13}, y_{15}, w_{19}\right)
$$

where w_{13} represents the old $x_{1} x_{2}{ }^{6}$ and w_{19} represents the old $x_{3} y_{8}{ }^{2}$.
The remaining differentials are of the form $d_{4 s+1}$ with $s \geqslant 2$. The element x_{2} is induced from the generator of $H^{2}\left(B \mathbf{Z}_{3} ; \mathbf{F}_{3}\right)$ and so must represent a permanent cycle. As usual, induction on the degrees of the elements shows that the images of the remaining generators must be primitive, but x_{2} is the only primitive in even degrees and hence all these other differentials are zero. The sequence thus collapses from the E_{6}-term onwards, giving the stated result.

We turn our attention now to the group $P E_{7}$ and examine its Morava K theories for the prime 2. We appeal to the work of [HS] and [Ka2] for the case $n=1$ and our calculations concentrate on the case of higher n. The following gives the mod 2 cohomology for this group. (The final claim of the theorem can be seen, for example, by considering the spectral sequence for the fibration $E_{7} \longrightarrow P E_{7} \longrightarrow$ $\mathbf{R} P^{\infty}$.)
Theorem 4.4 $H^{*}\left(P E_{7} ; \mathbf{F}_{2}\right)=\mathbf{F}_{2}\left[x_{1}, x_{5}, x_{9}\right] /\left(x_{1}{ }^{4}, x_{5}{ }^{4}, x_{9}{ }^{4}\right) \otimes \Lambda\left(x_{6}, x_{15}, x_{17}, x_{23}, x_{27}\right)$ and $\mathcal{P}\left(P E_{7}\right)=\left\{x_{1}, x_{1}{ }^{2}, x_{5}, x_{6}, x_{9}, x_{5}{ }^{2}, x_{17}, x_{9}{ }^{2}\right\}$. In this Hopf algebra, the reduced coproduct acts on the other generators by

$$
\begin{aligned}
& \bar{\psi}\left(x_{15}\right)=x_{6} \otimes x_{9}+x_{5}^{2} \otimes x_{5} \\
& \bar{\psi}\left(x_{23}\right)=x_{6} \otimes x_{17}+x_{9}^{2} \otimes x_{5} \\
& \bar{\psi}\left(x_{27}\right)=x_{5}^{2} \otimes x_{17}+x_{9}^{2} \otimes x_{9}
\end{aligned}
$$

Moreover, the quotient map $E_{7} \longrightarrow P E_{7}$ in cohomology carries each generator x_{i} for $i=5,9,15,17,23,27$ to the element of the same name as that used in §3.
Theorem 4.5 The Atiyah-Hirzebruch spectral sequence for $K(n)^{*}\left(P E_{7}\right)$ collapses for all $n \geqslant 2$.
Proof It suffices to show that the Atiyah-Hirzebruch spectral sequence collapses for $n=2$. The differentials here are d_{7}, d_{13}, d_{19} and so on. The first of these, d_{7}, must be zero on each generator, as can be seen from the usual analysis of primitives. For the second differential, d_{13}, examination of the primitives fails to rule out a possible action sending x_{5} to some non-trivial multiple of $x_{9}{ }^{2}$. However, this is ruled out by the naturality of the Atiyah-Hirzebruch spectral sequence with respect to the map
$E_{7} \longrightarrow P E_{7}$; explicitly, by the result (3.6). Once we see that $d_{13}\left(x_{5}\right)=0$ then the module of primitives shows the whole of d_{13} to be trivial. Finally, d_{19} and all higher differentials are zero for dimensional reasons: the highest dimension primitive is in degree 18.

$\S 5$ The projective symplectic groups

The projective symplectic groups $P S p(m)$ are the quotients of the symplectic groups $S p(m)$ by their centres \mathbf{Z}_{2}. Since projective symplectic groups have only 2 torsion, the prime in this section will always be 2 . The main results are Theorems 5.3 and 5.4, which describe the Morava K-theory of the groups $\operatorname{PSp}(m)$ additively. The latter parts of the section are concerned with the $P(n)^{*}$-module structure of $P(n)^{*}(P S p(m))$ where we obtain only partial answers.

The mod 2 cohomology of $P S p(m)$ was computed, as a Hopf algebra, by Baum and Browder $[\mathrm{BB}]$; the following summary of their results is quoted from [Mi].
Theorem 5.1 Let $m=q m^{\prime}$ where $q=2^{r}$ is the highest power of two dividing m. Then

$$
H^{*}\left(P S p(m) ; \mathbf{F}_{2}\right) \cong \mathbf{F}_{2}[v] / v^{4 q} \otimes \Lambda\left(b_{3}, b_{7}, \ldots, \widehat{b}_{4 q-1}, \ldots, b_{4 m-1}\right)
$$

where v is in dimension one, b_{r} is of dimension r and " " indicates that an element is missing. The action of the mod 2 Steenrod algebra is given by

$$
\begin{aligned}
& S q^{4 j} b_{4 k+3}=\binom{k}{j} b_{4 k+4 j+3} \\
& S q^{j} b_{4 k+3}=0 \text { if } j \not \equiv 0(4) \text { unless } r \geqslant 1, j=1 \text { and } 4 k+3=2 q-1: S q^{1} b_{2 q-1}=v^{2 q} .
\end{aligned}
$$

The reduced diagonal is given by

$$
\begin{aligned}
\bar{\psi}\left(b_{4 k+3}\right) & =\sum_{i=1}^{k-1}\binom{k}{i} b_{4 i+3} \otimes v^{4 k-4 i} \quad(k \geqslant 2) \\
\bar{\psi}\left(b_{7}\right) & =b_{3} \otimes v^{4} \\
\bar{\psi}\left(b_{3}\right) & =0
\end{aligned}
$$

For simplicity we shall distinguish two cases: (1) $n>r$ and (2) $n \leqslant r$. The first case is essentially trivial in the sense that there are no differentials in the AHSS

$$
\begin{equation*}
E_{2}^{* *}=H^{*}\left(P S p(m) ; \mathbf{F}_{2}\right) \otimes K(n)^{*} \Longrightarrow K(n)^{*}(P S p(m)) \tag{5.2}
\end{equation*}
$$

Theorem 5.3 The spectral sequence for $K(n)^{*}(P S p(m))$ collapses on $E_{2}^{* *}$ whenever $n>r$. In other words, there is an isomorphism of $K(n)^{*}$-modules

$$
K(n)^{*}(P S p(m)) \cong K(n)^{*} \otimes H^{*}\left(P S p(m) ; \mathbf{F}_{2}\right)
$$

Proof Since $Q_{n} b_{i}=0$ by (5.1) and $Q_{n} v=v^{2^{n+1}}=0$, we have $E_{2^{*+1}}^{* *}=E_{2}^{* *}$. Next we show that v is a permanent cycle. As v is primitive any potential image of v under some differential d_{r} has to be primitive too. Since there are no even degree primitives in the target area of a potential differential, $d_{r}(v)=0$ for all r.

By the same argument, $d_{r}(b)=0$ for any primitive b, which are those in degrees $4 k+3$ with k a power of two, except for b_{7}. In particular, b_{3} is a permanent cycle. This suffices to start the following induction on k. Suppose $d_{r}\left(b_{4 l+3}\right)=0$ for all l less than k. Then $d_{r}\left(b_{4 k+3}\right)$ is primitive by (2.3) and hence zero for the lack of primitives in the appropriate (even) degrees.
The other case is not much more complicated either.
Theorem 5.4 If $r \geqslant n$ then, as $K(n)^{*}$-modules,

$$
K(n)^{*}(P S p(m)) \cong K(n)^{*} \otimes \mathbf{F}_{2}[u] /\left(u^{2^{n}}\right) \otimes \Lambda(w) \otimes \Lambda\left(b_{3}, b_{7}, \ldots, \widehat{b}_{4 q-1}, \ldots, b_{4 m-1}\right)
$$

where u is in degree two, and w in degree $2^{r+2}-2^{n+1}+1$.
A comment on degrees of elements may be in order here. When writing " x has degree k " we actually mean it to have degree k modulo the degree of v_{n}, since the natural grading on $K(n)^{*}$ is the cyclical grading modulo $\left|v_{n}\right|=-2\left(2^{n}-1\right)$. Of course the degrees as we state them serve also to record the skeletal filtration numbers of representatives of these elements.
Proof The difference to the previous calculation is that we now have a non-trivial differential, namely

$$
d_{2^{n+1}-1}(v)=v_{n} Q_{n} v=v_{n} v^{2^{n+1}}
$$

The theorem asserts that this is the only non-trivial differential. Since Q_{n} vanishes on the b 's, the $E_{2^{n+1}}$-term is as in the statement of the theorem, where we wrote
 fibre bundle

$$
S p(m) \longrightarrow P S p(m) \xrightarrow{i} B \mathbf{Z}_{2}
$$

where i is the map which picks up the class v in cohomology (see [BB]). Follow up the map i by the obvious map to $\mathbf{C} P^{\infty}$ classifying the canonical line bundle over $B \mathbf{Z}_{2}$. Then the two-dimensional generator of the cohomology of $\mathbf{C} P^{\infty}$ maps to v^{2}, and comparison to the Atiyah-Hirzebruch spectral sequence for $\mathbf{C} P^{\infty}$ gives the result. Thus all the even powers of v are permanent. The result now follows by an induction identical to that used in the proof of (5.3).

We conclude the section with a few remarks on $P(n)^{*}(P S p(m))$, where we can offer only partial results. In the $P(n)^{*}$-AHSS differentials also have odd horizontal
degree, so, by the same argument as above, it collapses on $E_{2}^{* *}$ as long as $n>r$. To determine the structure as $P(n)^{*}$-module, the following lemma, due to Yagita, is useful.
Lemma 5.5 ([Y2], Lemma 2.1) Let X be a finite complex. Let $x_{i} \in H^{*}\left(X ; \mathbf{F}_{p}\right)$ be permanent cycles in the AHSS for both $P(n)^{*}$-theory and $K(n)^{*}$-theory. Then in the E_{∞}-term for the $P(n)^{*}$-theory spectral sequence the $P(n)^{*}$-module generated by the x_{i} is $P(n)^{*}$-free.

We immediately deduce
Theorem 5.6 For $n>r$, there is a $P(n)^{*}$-module isomorphism

$$
P(n)^{*}(P S p(m)) \cong P(n)^{*} \otimes H^{*}\left(P S p(m) ; \mathbf{F}_{2}\right)
$$

For $1 \leqslant n \leqslant r$ there is a $P(n)^{*}$-analogue to (5.4) too, in the sense that the AHSS collapses after the first differential $d_{2^{n+1}-1}$. This is proved in exactly the same way as before. The $P(n)^{*}$-module structure however becomes more complicated. We have only been able to determine it in the first non-trivial case, which is that of $n=r$.
Proposition 5.7 For $m=2^{r} m^{\prime}$ with m^{\prime} odd, there is a $P(r)^{*}$-module isomorphism
$P(r)^{*}(P S p(m)) \cong\left(\begin{array}{c}P(r)^{*} \otimes \mathbf{F}_{2}[u] /\left(u^{2^{r}}\right) \otimes \Lambda(w) \\ \oplus \\ P(r+1)^{*}\left\{x, x u, \ldots, x u^{2^{r}-1}\right\}\end{array}\right) \otimes \Lambda\left(b_{3}, \ldots, \widehat{b}_{4 q-1}, \ldots, b_{4 m-1}\right)$
where $\operatorname{deg}(u)=2, \operatorname{deg}(w)=2^{r+1}+1$ and $\operatorname{deg}(x)=2^{r+1}$.
Proof The argument is completely analogous to the one used repeatedly in [Y2], e.g. Lemma 5.4. The first non-zero differential is $d_{2^{r+1}-1}$, and $E_{2^{r+1}}^{* *}$ is isomorphic to the right hand side in the statement of the proposition. Here the classes u and w correspond to v^{2} and $v^{2^{r+1}+1}$, respectively, as in (5.4). To prove that the spectral sequence collapses on $E_{2^{r+1}}^{* *}$ we use downward induction on the horizontal degree. Assume that every element in $E_{2^{r+1}}^{s, *}$ persists to the E_{∞}-term for $s>t$, and let $y \in E_{2^{r+1}}^{t, 0}$. Then $d_{m}(y)=0$ for any $m>2^{r+1}$ by the inductive hypothesis. Since the Atiyah-Hirzebruch spectral sequence for $P(r)^{*}$-theory is confined to the fourth quadrant, this means that y is in $E_{\infty}^{* *}$. Now y will be of the form $y_{1}+y_{2}$, where y_{1} is in the first summand of the $E_{2^{r+1}}$-term and y_{2} in the second. If y_{1} is non-zero, then y is also a non-trivial permanent cycle in the $K(r)^{*}$-AHSS and thus the $P(r)^{*}$-module it generates is free by (5.5). If $y_{1}=0$, consider the map $i_{\infty}: E_{\infty}^{* *}(P(r)) \rightarrow E_{\infty}^{* *}(P(r+1))$ induced by $i: P(r) \rightarrow P(r+1)$. The $P(r+1)^{*}-$ module generated by $i_{\infty}(y)$ is free, hence the $P(r+1)^{*}$-module generated by y is
free, too. This completes the inductive step, and we conclude $E_{2^{r+1}}^{* *}=E_{\infty}^{* *}$. It remains to show that the isomorphism is as $P(r)^{*}$-modules. For that it suffices to construct an element $x \in P(r)^{*}(P S p(m))$ with $v_{r} x=0$. Consider the exact triangle

$$
\begin{gathered}
P(r)^{*}(P S p(m)) \xrightarrow{v_{r}} P(r)^{*}(P S p(m)) \\
\delta \nwarrow \quad \swarrow i \\
P(r+1)^{*}(P S p(m))
\end{gathered}
$$

The element $i \delta v=Q_{r} v$ is non-zero, hence $\delta v \neq 0$; let $x=\delta v$ and by exactness, $v_{r} x=0$.

$\S 6$ The projective unitary groups and other quotients of $S U(m)$

In this section we want to study the Morava K-theory and $P(n)$-theory of central quotients of $S U(m)$. Recall that the centre of $S U(m)$ consists of elements of the form $\lambda \cdot$ Id with $\lambda^{m}=1$, and the groups in question are quotients of $S U(m)$ by (central) subgroups \mathbf{Z}_{ℓ} where ℓ divides m. The method shall be the same as in the previous sections, namely a (brute force) calculation of the Atiyah-Hirzebruch spectral sequence. (6.1) below, due to Baum and Browder ([BB]), gives the cohomology of these groups; we quote once again from the survey [Mi].
Theorem 6.1 Let \mathbf{Z}_{ℓ} be a subgroup of the centre \mathbf{Z}_{m} of $S U(m)$, and let p be a prime dividing ℓ. Let $m=p^{r} m^{\prime}, \ell=p^{s} \ell^{\prime}$, where m^{\prime} and ℓ^{\prime} are prime to p, and set $G=S U(m) / \mathbf{Z}_{\ell}$. If $p>2$, or $p=2$ and $s>1$, there exist generators $z_{i} \in H^{2 i-1}\left(G ; \mathbf{F}_{p}\right), 1 \leqslant i \leqslant m, i \neq p^{r}$, and $y \in H^{2}\left(G ; \mathbf{F}_{p}\right)$ such that
(a) $H^{*}\left(G ; \mathbf{F}_{p}\right) \cong \mathbf{F}_{p}[y] /\left(y^{p^{r}}\right) \otimes \Lambda\left(z_{1}, z_{2}, \ldots, \widehat{z}_{p^{r}}, \ldots, z_{m}\right)$ as algebras;
(b) $\bar{\psi}\left(z_{i}\right)=\delta_{r s} z_{1} \otimes y^{i-1}+\sum_{j=2}^{i-1}\binom{i-1}{j-1} z_{j} \otimes y^{i-j}$ for $i>1$, where $\delta_{r s}=1$ if $r=s$ and zero else, $\bar{\psi}\left(z_{1}\right)=0, \bar{\psi}(y)=0$;
(c) $\mathcal{P}^{k} z_{i}=\binom{i-1}{k} z_{i+k(p-1)}, \beta z_{p^{r-1}}=y^{p^{r-1}}$, and in addition, $\beta z_{1}=y$ if $s=1 .^{\dagger}$

If $p=2$ and $s=1$ the above has to be modified as follows: in (a), one has $y=z_{1}^{2}$, and in addition
(d) $S q^{2 k+1} z_{i}=0$ except for $S q^{1} z_{1}=z_{1}^{2}$ and $S q^{1} z_{2^{r-1}}=z_{1}^{2^{r}}$ if $r>1$.

Let G be as in the statement of the theorem. A basis for the module of primitive elements in the $\bmod p$ cohomology of G is given by
(i) $z_{1}, y, y^{p}, \ldots, y^{p^{r-1}} \quad$ if $r=s$;

[^0](ii) $z_{1}, z_{p+1}, z_{p^{2}+1}, \ldots, z_{p^{r-1}+1} ; y, y^{p}, \ldots, y^{p^{r-1}} \quad$ if $r \neq s$.

Furthermore, using parts (c) and (d) of the same theorem, one readily verifies
(iii) $Q_{k} y=0, Q_{k} z_{i}=0$ as long as $k>0, i>1$;
(iv) $Q_{k} z_{1}=y^{p^{k}}$ if $s=1$, and zero otherwise for p odd;
(v) $Q_{k} z_{1}=z_{1}^{2^{k+1}}$ if $s=1$, and zero otherwise for $p=2$.

As in the previous section, degree arguments imply:
Lemma 6.2 Suppose G is as above and $n \geqslant r>0$. Then we have the following isomorphisms of $K(n)^{*}$, respectively $P(n)^{*}$, modules:
(a) $K(n)^{*}(G) \cong K(n)^{*} \otimes H^{*}\left(G ; \mathbf{F}_{p}\right)$.
(b) $P(n)^{*}(G) \cong P(n)^{*} \otimes H^{*}\left(G ; \mathbf{F}_{p}\right)$.

Proof We begin with the $K(n)$ result. Under the stated assumptions the first differential is trivial. Any subsequent differential has length at least $4\left(p^{n}-1\right)+1$, and thus vanishes on the primitives z_{1} and y for dimensional reasons. Now use the inductive argument of (5.3) to see that the spectral sequence collapses. This shows (a); the same argument works for the $P(n)$ case and the isomorphism as $P(n)^{*}$-modules follows from (5.5).
From now on we shall assume that p is odd, the case $p=2$ being similar. To simplify further and avoid cumbersome notation, we consider only projective unitary groups in detail, although the arguments work in greater generality (see our remark 6.4). So let $m=\ell$ (p odd), with $m=p^{r} m^{\prime}$ where p does not divide m^{\prime}, and $r>0$. Notice that the assumption on n in (6.2) may then be relaxed to $n \geq \min \{1, r-1\}$, but for smaller n dimensional arguments alone no longer suffice to compute differentials in the AHSS, or rather show their vanishing; one has to use the fact that this is a spectral sequence of Hopf algebras more efficiently. The following theorem is stated in terms of $P(n)$, which of course implies the analogous statement for $K(n)$.

Theorem 6.3 The $P(n)^{*}$-AHSS for $P(n)^{*}(P U(m))$ collapses if $n>0$, and there is an isomorphism of $P(n)^{*}$-modules

$$
P(n)^{*}(P U(m)) \cong P(n)^{*} \otimes H^{*}\left(P U(m) ; \mathbf{F}_{p}\right)
$$

Proof We know this already when n is at least $r-1$; we also know that the first differential $v_{n} \otimes Q_{n}$ vanishes for $n>0$. The only primitives in the cohomology of $P U(m)$ being z_{1} and $y^{p^{k}}, 0 \leqslant k<r$, one sees immediately that y is a permanent cycle. We claim that the z 's are permanent cycles, too. Suppose not. Let d be the first non-trivial differential and z_{j} the lowest degree generator on which d does not vanish. Then $d\left(z_{j}\right)$ is primitive, by (2.3), thus $d\left(z_{j}\right)=\alpha y^{p^{k}}$ for some $k \geqslant 2$ and
some $\alpha \in P(n)^{*}$, which we shall suppress from notation. Let j_{0} be the smallest positive integer such that $z_{j} \otimes y^{j_{0}}$ is a summand in $\bar{\psi}\left(z_{j+j_{0}}\right)$. For $j=1$ we have $j_{0}=1$; if $j>1, j_{0}$ is the smallest positive integer such that $\binom{j+j_{0}-1}{j-1} \not \equiv 0 \bmod p$. This is easily computed as follows: let $j-1=\sum_{0}^{t} a_{\nu} p^{\nu}$ be the p-adic expansion of $j-1$; pick the first coefficient, $a_{\nu_{0}}$ say, which is smaller than $p-1$ and set $j_{0}=p^{\nu_{0}}$. Now ν_{0} has to be smaller than k (since otherwise $j=p^{k}$ and $\operatorname{deg} d=1$), hence $j_{0} \leqslant p^{k-1}$. The next even degree primitive after $y^{p^{k}}$, if one exists, being $y^{p^{k+1}}$ in degree $2 p^{k+1}$, one inductively concludes that for $l<j_{0}, d\left(z_{j+l}\right)$ has to be primitive and hence zero. Furthermore,

$$
\bar{\psi} d\left(z_{j+j_{0}}\right)=d \bar{\psi}\left(z_{j+j_{0}}\right)=d\left(\lambda z_{j} \otimes y^{j_{0}}+\text { other terms }\right)=\lambda y^{p^{k}} \otimes y^{j_{0}}
$$

where λ is some non-zero constant, the "other terms" giving zero since they involve only lower degree generators. But there are no classes $x \in H^{*}\left(G ; \mathbf{F}_{p}\right)$ with $\bar{\psi}(x)=$ $y^{p^{k}} \otimes y^{a}$ for any $a<p^{k}$, by inspection, and we arrive at a contradiction. The ismomorphism $P(n)^{*}(P U(m)) \cong P(n)^{*} \otimes H^{*}\left(P U(m) ; \mathbf{F}_{p}\right)$ as modules follows again from (5.5).
Remark 6.4 The same proof goes through for $G=S U(m) / \mathbf{Z}_{\ell}$ if m and ℓ have the same p-exponent, i.e., if $r=s$ in the notation of (6.1).

REFERENCES

[BB] P. F. Baum and W. Browder, The cohomology of quotients of classical groups, Topology 3 (1965), 305-336.
[Br] W. Browder, On differential Hopf algebras, Trans. Amer. Math. Soc. 107 (1963), 153-176.
[HS] R. P. Held and U. Suter, On the K-theory of compact Lie groups with finite fundamental group, Quart. J. Maths., 24 (1973) 343-356.
[Ho] L. Hodgkin, On the K-theory of Lie groups, Topology 6 (1967) 1-36.
[Hu] J. R. Hunton, On Morava's extraordinary K-theories, Ph. D. thesis, Cambridge, 1989.
[Ka1] R. Kane, BP torsion in finite H-spaces, Trans. A. M. S., 264 (1981) 473-497.
[Ka2] R. Kane, Implications in Morava K-theory, Memoires A. M. S., 340 (1986).
[Mi] M. Mimura, Homotopy theory of Lie groups, in: Handbook of Algebraic Topology, ed. by I.M. James, Elsevier (1995) 951-991.
[Rao] V. K. Rao, On the Morava K-theories of $\mathrm{SO}(2 \mathrm{n}+1)$, Proc. Amer. Math. Soc., 108 (1990) 10311038.
[Rav] D. C. Ravenel, Localisation with respect to certain periodic cohomology theories, Amer. J. Math., 106 (1984) 351-414.
[Y1] N. Yagita, On the Steenrod algebra of Morava K-theory, J. London Math. Soc., 22 (1980) 423-438.
[Y2] N. Yagita, On mod odd prime Brown Peterson cohomology groups of exceptional Lie groups, J. Math. Soc. Japan, 34 no. 2 (1982) 293-305.

[^0]: \dagger This last operation seems to be missing in the original paper $[\mathrm{BB}]$ as well as in $[\mathrm{Mi}]$.

