Contract-oriented specifications
Richard Mitchell, John Howse and Ali Hamie
Division of Computing
University of Brighton
Brighton BN2 4GJ, UK

{Richard.Mitchell, John.Howse, A.A.Hamie} @brighton.ac.uk

Copyright notice

This paper was published in

Chen J, Li M, Mingins C and Meyer B (editors)
Proceedings TOOLS24, |EEE 1997

The materia is © 1997 IEEE. Persona use of this
material is permitted. However, permisson to
reprint/republish this material for advertisng or
promotiona purposes or for creating new collective
works for resale or redistribution to servers or lists,
or to reuse any copyrighted component of this work
in other works must be obtained from the |EEE.

Abstract

In classes developed using design-by-contract,
contracts contain assertions that formalise
preconditions, postconditions and invariants. To be
sure that contracts are complete, they can be derived
from specifications. For classes in a data structures
library, equational specifications are appropriate.
However, a conventional equational specification
cannot usually be mapped directly to contracts.
Instead, a second, contract-oriented, equational
gpecification can be devised, with two key
properties: it can be proved that the contract-
oriented specification implies the origina
specification; and the contract-oriented specification
can be mapped systematicaly to contracts. These
two properties combine to increase confidence that
the contracts capture the same abstraction as the
equational specification.

1 Introduction

Contracts between the suppliers of services provided
by objects and the clients of those services contain
assertions expressing preconditions and
postconditions on individual services, and invariants
on complete types or classes. Contracts can be
expressed formaly or informally, and can be used in
analysis and design models as well as in programs
(see Figure 1). Fusion (Coleman, Arnold, Bodoff,
Dallin, Gilchrist, Hayes and Jeremaes 1994) uses
pre and postconditions to define operations, and this
approach has been caried over to the Unified

Contract-oriented specifications

Modelling Language (Booch, Jacobson and
Rumbaugh 1997). Syntropy (Cook and Daniels
1994) and Catalysis (D'Souza and Wills 1997)
provide aformal notation for expressing contracts.
At the programming level, Eiffe (Meyer 1992)
provides direct support for contracts by providing
placeholders for preconditions, postconditions
and invariants
special operators (particularly the old operator)
to support the writing of contracts
automatic checking of assertions (with
programmer control over which assertions are
checked).
In programming languages other than Eiffd,
informal contracts can be expressed in the form of
comments, and formal contracts can be smulated by
using macros or functions for defining assertions,
and by making explicit calls to evaluate them.

Informal Formal

Analysis Fusion, Syntropy,
& design UML Catalysis

Comments
Programs within Eiffel
source

code

Figure 1. Examples of where contracts can be
found

Within Eiffel programs, formal contractsin class
interfaces can be expressed using boolean
expressions written in Eiffel. This means they can
be executed, to check that objects of the class
behave according to the stated contract.

The work reported here is part of a larger
programme to explore how the wuse of
mathematically-grounded ideas can be used within
object technology. This paper addresses the question
of how to move from an equationa specification of a
type to contracts within a corresponding class, with

Mitchell, Howse and Hamie 1

the competing gods of being confident that the
contracts are complete and are fathful to the
origina specification yet without being fully formal
a every step. The basis of the answer offered hereis
to devise a second forma specification to support
the journey from a given forma specification to
contracts at the program level. This approach builds
on ideas in (Meyer 1994a) which proposes adding
features to a class in order specifically to be able to
write richer, more expressive contracts.

Our work is currently focused on classes from a
data structures library (Meyer 1994b), so equational
specifications make suitable starting points. We
have chosen the Larch specification language
(Guttag and Horning 1993) because it has a
handbook of specifications that have been exposed
to public scrutiny, and an associated theorem prover
(Garland and Guttag 1991).

We have carried out most of our design-by-
contract experiments using Eiffel, because it
provides runtime checking of assertions, making the
experiments easy to conduct. For the sake of clarity,
we do not use the full power of the Eiffel language
in the examples (for instance, we have avoided
anchored declarations). A brief explanation of
relevant Eiffel-specific terminology is given in
Appendix A.

The paper is organised as follows. The next
section introduces three styles of specification.
"Property-oriented” specifications concentrate on
defining the properties of data types without
discussing computational issues such as how to
arive a results. "Construction-oriented"
gpecifications include agorithmic information on
how to arrive at results. Finally, "contract-oriented”
specifications, introduced in this paper, can be
mapped systematically to contracts in programs and
can be connected to corresponding property-oriented
specifications. Contract-oriented specifications thus
form a dSepping-stone between conventional
property-oriented specifications and contracts in
programs, allowing us to have confidence that our
contracts describe the same abstraction as the
corresponding property-oriented specifications,
which we take as the starting point for specifying a
class interface.

Section 3 presents more details of the route from
property-oriented specification to program-level
contracts. Figure 2 shows an overview of the route.
Section 4 discusses how the route supports the claim
that the contracts capture the same abstraction as the
property-oriented specification. In practice, class
interfaces contain commands—features that change
the dtate of the receiving object. Section 5 shows

Contract-oriented specifications

how contracts on functions are connected to
contracts on commands, and includes a brief
discussion on whether encapsulation is compromised
by the addition of features to support contracts.
Section 6 reviews what has been achieved and looks
forward to work that still needs doing.

We have used the data type SET as the basis for
our examples. In our experience, it is the trickiest to
work with of al the simple data types, because sets
have no internal structure. If you understand the way
we handle sets, you will be able to work out how to
handle stacks, queues, lists, binary search trees, and
the like.

generally accepted constructed
within the relevant - systematically
community (for data Evented and checked

/| structure classes) | during testing

this step is based
on systematic
mapping

this step is based
on proof

property-oriented contract-oriented assertions
specification specification for contracts

4

A 4

classinterface | - class interface
needing contracts with contracts

Figure 2. An overview of the route

A class interface needing contractsis turned into
one with contracts (dotted arrow) via this route: an
appropriate property-oriented specification of the
underlying abstract data typeis mapped to a
contract-oriented specification and then to
assertions that can be inserted as contracts; the
mapping is supported partly by proof and partly by
being systematic. For data structure classes, the
property-oriented specifications are usually
already available. For other domains, they would
need devising and agreeing

We have not tried to measure the effort it takes to
write contracts in our style, or any other style, and
we do not know how to measure the savings that
might result from using contracts. Therefore, we do
not claim any cost-benefit for our approach. For our
own peace of mind, we assume that there could be
software development projects that would benefit

Mitchell, Howse and Hamie 2

from the very careful use of contracts (by which we
mean doing better than devising contracts in an ad
hoc manner, but stopping short of full, forma
reification of gspecification to code). For instance,
one such project might be to build, test and
document a data structure library that is to serve as
the basis of an international standardisation effort.

2 Three styles of specification

Here is part of a Larch specification of the type
SET, showing the signatures of some of SET's
functions. SET is generic in the type, G, of elements
it contains.

SET(G)
null : -> Set
plus : Set, G -> Set
has : Set, G -> Boo
union : Set, Set -> Set

The specification continues by listing a number of
axioms that define the properties of these functions.

s, sl1, s2 : Set, g, 91, g2 : G
g has(null, g)
has(plus(s, g2), g1) ==
g2 = gl U has(s, gl)
has(union(sl, s2), g) ==
has(s1, g) U has(s2, @)

The first two axioms capture the relationship
between the function 'has, which accesses a set
value to produce a boolean value, and the two
functions 'null’ and 'plus’ that, between them, can be
used to generate every possible set value; these two
axioms thus define 'has. The third axiom uses 'has
to define 'union'. The style of this axiom is property-
oriented (Jones 1986). It asserts the property of the
union of sets'sl' and 's2' that, for any element, the
union has the element if, and only if, either of the
sets used to form the union has that element. But it
gives no clue about how to construct the union of
'sl' and 's2'.

Here is another way to specify ‘'union’, in what
we call a construction-oriented style.

" sl, s2: Set, g: G
union(sl1, null) == s1
union(sl1, plus(s2, g)) ==
uni on(plus(sl, g), s2)

These two axioms could readily be turned into the
definition of an executable function in a functional
programming language. The axioms show how this
function can construct its result, which is why we

Contract-oriented specifications

say that the corresponding specification is
congtruction-oriented.

Now we turn to the world of object-oriented
programs. Here is the declaration of a feature 'union’
within the interface to a class SET.

class interface SET[({

feature
uni on(ot her SET[F) : SET[G
- A new set object holding the union
- of "Current' and 'other' and sharing
- the elenents of 'Current' and
- 'other’
ensure

The keyword 'ensure’ introduces a postcondition that
will define the result of invoking 'union’. Sadly, this
postcondition cannot be derived directly from either
of the two specifications we aready have. We want
to write a postcondition that asserts what is true
about the result of invoking 'union’, so the property-
oriented specification has the right flavour. The two
sets known as 'sl' and 's2' in the relevant axiom are
known as 'Current’ and 'other' in the program, but
the element 'g' in the axiom has no counterpart in the
program.

The construction-oriented specification is geared
to a computational world—it defines an agorithm
for reaching the required result. Can we work from
that specification? It, too, is not suitable for our
purposes, because it, too, refers to an element 'g'
within the pattern-matching expression on the left-
hand side of the axiom.

This leads us to a third style of specification,
which we cdal contract-oriented because
specifications in this style can be mapped in a
straightforward manner to contracts in programs.
Here is the specification of ‘'union’ in the contract-
oriented style.

union(sl, s2) ==
if size(s2) = 0 then s1
el se
uni on(
plus(sl1, |ast_added(s2)),
except | ast _added(s2))

This will have been preceded by declarations of two
new functions:

| ast _added : Set -> G
except | ast_added : Set -> Set

We cdl functions like these "deconstructors'
(Mitchell 1996, Mitchel and McKim 1996),
because they are used to reveal the structure of a

Mitchell, Howse and Hamie 3

value of type set. Sets are generated ("constructed”,
in a mathematical sense) using 'null’ and 'plus. As a
result, some axioms have a left-hand-side of the
form

f(plus(s, 9)) ==

in which the pattern 'plus(s, g)' is used to uncover
the structure of an un-named set that is being used
as an argument to some function 'f'. The right-hand-
sde of the axiom can then refer to the component
parts, 's and 'g. There is no pattern-matching
mechanisn in conventionad object-oriented
programming languages, so we add features,
whenever necessary, to achieve the same effect. In
the case of sets, the features we need are 'last_added'
and 'except_last_added', and they are defined by
these axioms:

| ast _added(plus(s, g)) == g
except _| ast _added(pl us(s, g)) ==

Thereis adiscussion later on the propriety of adding
such features. For now we mention that the full
contract-oriented specification of SET also contains
a st equality function ‘is equa' that ignores
different element orderings exposed by 'last_added'
and 'except_last_added'.

The first step in mapping a contract-oriented
specification to contracts in a class is to map each
function in the specification to a feature in the class,
and then to work on individua functions. Continuing
with ‘union’ as the example, we bresk its axiom into
two, based on the axiom's if-then-else structure, and
introduce ‘is equal' wherever equality of sets is
involved.

size(s2) =0 P
i s_equal (union(sl, s2), sl)

not (si ze(s2) =0) b
i s_equal (uni on(sl,s2),
uni on(pl us(sl, | ast_added(s2)),
except _| ast _added(s2)))

For each of the new axioms, we choose a feature
whose postcondition can capture the axiom. Both the
above axioms can be captured in postconditions on
‘union’. (The deployment of axioms to postconditions
is not aways so direct. The axiom for 'last_added’,
for instance, becomes a postcondition on the feature
'plus. The axioms for 'size' are spread between the
features 'null’ and 'plus.) Next, we map the elements
of the axioms to elements of the program. To do
this, it is helpful to see what the axioms look like in
an object-oriented notation, in which one argument

Contract-oriented specifications

to each function has been distinguished as the
"receiver”.

s2.size = 0 inplies
sl.union(s2).is_equal (s1)

not (s2.size = 0) inplies
sl.union(s2).is_equal (
sl. plus(s2.1ast_added). uni on(
s2. except | ast_added))

The mapping to eements of the program is as
follows.

sl maps to Current (the receiver)
s2 maps to other (the argunent)
union(s2) naps to Result

Putting all the steps together, we now have a feature
‘'union’ with a postcondition that is derived
systematically from a specification.

uni on(ot her SET[F) SET[G]
-- A new set object holding the union
-- of '"Current' and 'other' and
-- sharing the elenments of 'Current
-- and 'other’
require
ot her _not _Voi d:
other /= Void
ensure
other is enpty neans_Result
equal s_Current:
other.size = 0 inplies
Result.is_equal (Current)
ot her _not_enpty neans_Result _
defined_recursively:
not (other.size = 0) inplies
Resul t.is_equal (pl us(
ot her . | ast _added) . uni on(
ot her. except | ast _added))

(A typical precondition has been added, introduced
by the keyword require, to make sure that the
argument 'other' actually does refer to some object.)

3 A second example

This second example shows how we usualy present
the mapping from specification to postconditions.
Earlier, we introduced these two property-oriented
axiomsfor 'has’

@ has(null, g)
has(pl us(s, g2),9l) ==
g2 = g1 U has(s, g1)

and observed that we could not systematically map
from these axioms to postconditions on features of a

Mitchell, Howse and Hamie 4

SET class. Hereis an axiom for 'has' in the contract-
oriented style that we can map:

has(s, g) ==
if size(s) = 0 then false
el se
if last_added(s) = g then true
el se

has(except | ast _added(s), g)

This can be split into its 3 cases (the change from
"=="to "=" and the logicaly unnecessary use of "=

true" areimmateria Larch details).

size(s) = 0 b has(s, g) = false
d(size(s) = 0) b (last_added(s) =g
P has(s,g) = true) = true
D(size(s) =0) b
(9(!ast _added(s) =g) b
has(s,g) =

has(except | ast _added(s), g))

Because the original axiom has a nested if-then-else
structure, the second and third of these axioms have
complex guards, of the form

guardl b (guard2 b definition).

Such guards are mapped to an object-oriented form
using a conditiona ‘and' operator (spelt and then in
Eiffd), likethis:

guardl and then guard2 inplies
definition.

The three axioms can now be mapped, one by one,
to postconditions on features in class SET. We show
the mappings in the form in which we normally
present them.

has - axiom1
Definition:
size(s) = 0 => has(s,g) = false
In OO synt ax:
s.size = 0 inplies s.has(g) = fal se

Post condi ti on on:

has
Map:

s to Current, has(g) to Result
Assertion:

size = 0 inplies Result = false

has - axiom 2
Definition:

Contract-oriented specifications

D(size(s) =0) b (last_added(s) =g b has(s, g))
In OO synt ax:
not (s.size = 0) and then
s.last_added = g inplies s.has(g)
Post condi ti on on:

has
Map:

s to Current, has(g) to Result
Assertion:

not (size = 0) and then

| ast _added = g inplies Result

has - axiom 3
Definition:

D(size(s) =0) b

(9(!ast _added(s) =g) b
has(s,g) =
has(except | ast_added(s), g))

In OO synt ax:

not (s.size = 0) and then

not s.last_added = g
i mplies s.has(g)
s.except | ast _added. has(Q)

Post condi ti on on:
has

Map:
s to Current,

has(g) to Result

Assertion:
not (size = 0) and then
not (last_added = g)
i mplies
Result = except | ast_added. has(Q)

The feature 'has in the interface of class SET looks

likethis.

has(g : G) BOOLEAN
-- Is 'g" an elenent of the set?
ensure

set _is_enpty nmeans_result
nust _be fal se:
si ze O inplies Result
| ooki ng_for | ast_el enent _
added_neans_result_is_true:
not (size = 0) and then
| ast _added = g inplies Result
ot herwi se_recur:
not (size = 0) and then
not (last_added = g) inplies

= fal se

Result = except | ast_added. has(Q)
It is more important that this resulting
postcondition, and the property-oriented

specification it is derived from, should be readable,
than that the intermediate forms should be readable.

Mitchell, Howse and Hamie

The specification and the contracts form the basis of
communication between developers of classes and
users of those classes. The intermediate forms,
including the contract-oriented specification, are the
province of just the devel opers.

4 Validating and verifying the contracts

How can we be sure that the postcondition just
derived for 'has is capturing what we originaly
specified about 'has for sets? The answer to this
guestion is in severa parts, reflecting the various
steps from class interface to contracts shown in
Figure 2.

We begin by assuming that a property-oriented
gpecification is validated within the community that
needs it (for example, by agreement between
developer and customer authority, or by genera
acceptance of published work). In our own work, to
help to avoid mistakes and unintended bias, we
aways start from published specifications (except
our own!).

The next part concerns how we show that a
contract-oriented specification is consistent with a
property-oriented one. For example, given a
property-oriented specification of SET, containing
axioms for 'has such as these:

has(null, Q)
has(pl us(s, g2),91) ==
g2 = gl U has(s, gl)

how can we be sure that a contract-oriented version
containing the following three-part axiom says the
same?

has(s, g) ==
if size(s) = 0 then false
el se
if last_added(s) = g then true
el se

has(except | ast _added(s), g)

The answer is that we prove that the contract-
oriented version implies the original property-
oriented version. Here is an outline of the key steps
in part of the proof. The theorem to be proved is the
second axiom in the property-oriented specification
of 'has. The proof starts from the contract-oriented
specification of 'has and establishes the property-
oriented axiom as a theorem. Proving this theorem is
equivaent to showing that any program that satisfies
the contract-oriented specification will aso satisfy
the property-oriented one, too. The proof and its
supporting lemmas have been checked using the
Larch theorem-prover.

Contract-oriented specifications

Theorem
"gl, g2 : G s : Set
has(plus(s, g2), gl) ==
g2 = g1 U has(s, gl)

Pr oof
"gl, g2 : G s : Set
has(pl us(s,g2),gl) ==
if size(plus(s,g2)) = 0 then

fal se
el se
if last_added(plus(s,g2)) = gl
then true

el se has(except | ast_added(
plus(s,92)), g1)

(instantiate the contract-oriented
axiomfor has with s replaced by

plus(s, g2))

==if g2 = gl then true else
has(s, g1)

(size(plus(s,g)) * 0 by I enmsg,

| ast _added(plus(s, g2)) = g2 by
definition of |ast_added,

except | ast _added(plus(s, g2)) = s by
definition of except |ast_added)

== g2 = g1 U has(s, gl)
(by definition of if-then)

Devising the contract-oriented version involves
invention, by someone who understands the
property-oriented version, and who knows what can
and cannot be mapped to contracts.

Once a contract-oriented specification has been
devised and verified, it can be mapped
systematically to contracts (mostly, postconditions),
without the need for much invention along the route
(the person devising the mapping must choose which
feature's postcondition an axiom maps to, but getting
this wrong makes it impossible to carry out the
mapping). The mapping is systematic, but there is
no proof that the postconditions follow from the
specification. The benefit of this is that it is not
necessary to construct proofs in alogic rich enough
to encompass both specifications and programs. The
cost is that we rely on being systematic to verify the
mapping from specification to contracts (we believe
we can construct a program to check the mapping,
but we have not done o yet).

The contracts are subject to further validation.
As a result of the way they have been derived, the
postconditions are executable. As the program is
tested, the postconditions are evaluated. Should any

Mitchell, Howse and Hamie 6

of the postconditions evaluate to fase on any test,
the tester will be aerted. People can then judge
whether it is the implementation or the postcondition
that is faulty. Confidence in the postconditions is
increased by the fact that they must survive the
testing process.

5 Reationship to commands

The features examined so far, 'union’ and 'has, were
both mapped to functions a the program level.
Usudly, a class will contain commands to modify
the receiving object. Imagine that a class SET
contains a command to perform a union-like
operation:

add_i n(ot her SET[G)
-- Mdify "Current' to be the
-- union of '"Current' and 'other'

The feature 'add_in' can have a contract that relates
it to 'union’ like this:

add_i n(ot her SET[F)
-- Mdify "Current' to be the
-- union of '"Current' and 'other'
require
ot her _not _Voi d:
other /= Void
ensure
ef f ect _defi ned_by_uni on
i s_equal (ol d union(other))

The postcondition has elided references to the
current, or receiving, object; in full it reads

Current.is_equal (
ol d Current. union(other))

If a feature such as 'add_in' is to be defined, and
there is not a corresponding function such as 'union’,
our approach is to introduce one. This means that
class interfaces are larger than usud. (We assume
compilers can remove unused code, so that compiled
production programs are not necessarily larger. For
instance, if postcondition checking is turned off,
features introduced only to write postconditions
could be omitted by a compiler.) In return for
reading alarger class interface, the programmer gets
contracts that are derived from specifications. To
show the kinds of features that are added, here is
what a STACK class might contain. The features
have been loosely categorised.

-- creation feature
make
-- conmands

put(g: G)

Contract-oriented specifications

del ete
-- queries
top : G
size : | NTEGER
i s_equal (ot her: STACK Q)
-- additional functions
plus(g : G): STACK] G]
m nus_top: STACK[G]

BOOLEAN

The features 'plus and 'minus_top' are the functions
corresponding to the commands 'put’ (often called
"push”, but we have adopted the uniform naming
convention advocated by Meyer (1994b)) and
'delete. These functions can be given contracts
derived from a specification. The commands can
then be defined in terms of the functions.

A note on encapsulation

A function such as 'minus_top' added to a STACK
class reveas nothing to a client of the class that
could not be determined using the regular features
such as 'delete’ and 'top'. Even a feature that reveals
the element at any position in a stack does not break
encapsulation. A feature such as

el ement _at(i INTEGER) : G

-- The elenent at position 'i' on
-- the stack, where the bottomis
-- position one and the top is

-- position 'size'.

can readily be programmed by a client, using only
normal client features such as 'size, 'top' and 'delete’.
The implementation might be very dow, and might
destroy the receiver, but these are not the issues.

The situation is a little different with some data
types, and SET is the trickiest we have encountered
so far. The examples have introduced two features
added to SET to support the contract-oriented
specification approach:

| ast _added : G

-- The nost recently added el enent
-- that has not been renoved
except | ast_added : SET[Q

-- A new set formed by discarding
-- the nost recently added el enent

If I am aclient that builds a set object, | know what
was the last element added (and all the ones before
that). If, however, | am a client that is given an
existing set, | cannot know what was the last element
added—sets do not have enough mathematical
structure to support such a notion.

We distinguish, therefore, between features that
are knowable only by a client that builds an object
from those that are knowable by a client that

Mitchell, Howse and Hamie 7

dismantles an object (these will aso be knowable by
a builder client). Our god is only to add features to
a class that are knowable by a dismantler. The
example of '‘dement_at' for class STACK presented
earlier would be one such feature. It is an unusua
feature to find in the interface to STACK, but
actually reveals no implementation details that a
client prepared to dismantle a stack object could not
find out using the regular features.

For SET (and data structures such as
DICTIONARY that have underlying set-like
properties), we cannot quite attain the goal, and we
are forced to add features that give some logical
internal structure to sets. However, features such as
'last_added' do not reveal anything about the chosen
implementation. That can still be changed without
any impact on the class interface. In addition, the
features mimic the structure given to sets in the
formal specification world, which uses pattern-
matching of the form 'plus(s, g)' to reved 'g', the
last added” element, and 's, the st
'except_last_added'. Findly, recall that both the
specification and the implementation of SET contain
a st equality function ‘is equa' that ignores
different element orderings exposed by 'last_added'
and 'except_last_added'.

A note on interfaces

Although the interface to class SET must contain the
features 'last_added' and 'except_last_added' so that
they can appear in contracts, there is no reason why
a project should not adopt the convention that such
features are used in test programs but not in normal
clients. With alittle help from tool builders, it would
be possible to define that such features are visible
only to the assertion-checking mechanism and to
human readers, thus enforcing the convention.

In practice, we are not nervous about writing
clients that use added features of the kind that reveal
nothing that could not aready be determined by a
client prepared to dismantle an object (for example,
'minus_top’ on a stack). We are nervous about
writing clients that use added features that revesl
information that only a builder of the object could
know (for example, 'last_added' on a set). We add
such features reluctantly to server classes, we avoid
cadling them from client classes, and we look
forward to tools that enforce these self-imposed
restraints.

Contract-oriented specifications

6 Conclusions and continuing work

The preceding sections have shown how contracts in
a class implementing a smple data structure can be
derived from a generadly-accepted equationa
gpecification. The derivation involves proof in the
first stage and systematic mapping in the second
stage. Because the first stage uses proof and the
second stage involves no change of levd (i.e, no
reification), there is no need for an abstraction
function usually associated with refinement from
specification to program.

Related work includes Larch interface languages
for Smaltalk (Cheon and Leavens 1997) and C++
(Leavens 1997) and the forma specification of
generic components of the C++ Standard Template
Library (Musser 1997). However, none of this work
considers mapping equationa specifications into
machine checkable assertions.

There are several strands to our continuing work
in the area of contracts. First, we are defining
contracts for further types of data. We are working
on those to be found in data structure libraries, and
we are beginning to look at how to write contracts
for application-oriented classes, which are usually
not so easy to treat "stand-alone" as data structures.

Some contracts are, perhaps, easier to write and
read if they are expressed using quantified
assertions. The Eiffel libraries (Meyer 1994b) make
use of quantified assertions, inserted as comments.
McKim (1996) advocates inserting quantified
assertions as comments as a means of achieving
complete descriptions of class interfaces. We have a
prototype of an approach to supporting runtime-
checkable, universally and existentially-quantified
assertions in current Eiffel. The programmer must,
again, define additional functions in the class. The
core of the approach is to keep a list of al objects
that have ever been created during one execution of
a program, and to quantify over that list. This
contrasts with an approach based on iterating
through collections (Katrib and Coira 1995); there,
it is not possible to assert properties of objects not in
the collection, such as that adl the objects that were
not in the collection are till not. We look forward to
object-oriented programming languages that give
more support for quantified assertions.

The contracts derived from property-oriented
specifications, via contract-oriented specifications,
are complete when seen as abstract specifications.
From a run-time checking perspective, however,
they are incomplete. Here is an example of
incompleteness. Some postconditions are recursive

Mitchell, Howse and Hamie 8

in form. For example, the postcondition on SET
'union’ contains the assertion

Result.is_equal (
pl us(ot her. | ast_added). uni on(
ot her. except | ast _added))

which compares 'Result’ (the union of 'Current’ and
‘other’) with another expression involving ‘union'’.
The evaluation of this postcondition is not recursive.
The reference to 'union’ in the second line invokes
the 'union' feature, and causes the execution of the
body of the feature. As a result, it is possible to
devise bugs in the body of the feature that remain
undetected by the postcondition. Such bugs must
exploit the fact that the results of two executions of
the body ae compared for equaity by the
postcondition, and so both can be wrong, provided
they are wrong "in the same way". We have a
prototype of an approach to plug this hole, based on
executing the recursive specification from which the
contract was derived, and checking that the body of
the feature delivers a matching result.

In this paper, we have smplified the testing for
equaity between two container objects by pretending
that one 'is equal’ will do. In fact, a least two
equality tests are needed, one that tests that two
containers contain the same objects, and another that
tests that corresponding objects in two containers
have the same contents. (Equivalently, containers
can be commanded to test equality using one or
other condition.) We routinely include tests for
‘contains_same_objects as and
‘contains_objects with_same values as, and carry
the testing of both these aspects of equality of
containers recursively down to the level of values.

Finally, in our work on contracts, it is our goa to
develop different levels of checking, to provide
different levels of "certification" of software, each
with its own costs and benefits.

Acknowledgements

We gratefully acknowledge the support of the UK
EPSRC under grant number GR/K67304. We thank
Franco Civello, Stuart Kent and John Taylor for
their helpful comments on an earlier draft.

Appendix A: Some Eiffel terminology

assertion A boolean expression used to
document a program whose
fasehood signals a fault in the
program. An assertion can be
presented as a sequence of

Contract-oriented specifications

attribute

classinterface

creation

command

Current

ensure

feature
is equal

old

precondition

postcondition

Mitchell, Howse and Hamie

boolean expressions, each of
which can be preceded by a tag
(alabd). The complete assertion
is the logica ‘'and of the
individual boolean expressions.

A data item; clients have read-

only access to exported
attributes.
The type of a class—the

signatures of its visible features
and a definition of ther
behaviour via comments and
contracts.

When an object is created it is
initialissd by one of the
designated creation routines.

A routine that might change the
state of the receiving and other
objects but which does not return
aresult.

Eiffd's term for sdf or this.
When Current is the receiver, it

need not be stated.

Keyword that maks the
beginning of a postcondition.

A routine or an attribute.

The function is equal tests
object contents for equality

(contrast this with the operator
"=", which tests object identities
for equality).

A tem of the form old
expression can appear in

postconditions, and refers to the
value of the expression before
the method began to execute.

An assartion that defines the
conditions under which it is valid
to call aroutine.

An assertion that defines the
outcome of a method. If the
method is a command, the
postcondition defines the effect
of the command by defining the
relationship between the values
of queries after the method has
executed and their values before
the method executed. If the

method is a query, the
postcondition defines the resuilt.

query A routine that returns a result
and does not change the (logical,
visible) state of any objects, or
an attribute—exported attributes
are read-only accessible by

clients.

require Keyword that introduces a
precondition.

Result A predefined variable to hold the
vaue to be retuned by a
function.

routine A procedure, which carries out a

command, or a function, which
carries out a query. All routines
are defined within some class.

tag A label preceding a boolean
expression within a contract.
Tags are not necessary, but they
improve documentation and are
useful debugging aids—when an
assertion fails its tag is amongst
the pieces of information
presented to the programmer,
and helps pinpoint the cause of
the failure.

References

Booch G, Jacobson | and Rumbaugh J (1997). The
Unified Modelling Language for object-oriented
development. [Onling]. Available: Rational Software
Corp.

http://www.rational .com/ot/uml/1.0/index.html

Cheon Y and Leavens G (1994): The
Larch/Smalltalk Interface Specification Language.
ACM Transactions on Software Engineering and
Methodology, 3(3):221-253, July 1994.

Coleman D, Arnold P, Bodoff S, Dallin C, Gilchrist
H, Hayes F and Jeremaes P (1994). Object-oriented
development. The Fusion method. Prentice Hall.

Cook S and Daniels J (1994). Designing object
systems. Prentice Hall.

D'Souza D and Wills A (1997). Component-based
development using Catalysis. [Onling]. Available:
ICON Computing Inc., http://www.iconcomp.com

Contract-oriented specifications

Garland S and Guttag J (1991). A guide to LP, the
Larch Prover. Technica Report TR82. Digital
Equipment Corporation, Systems Research Center.

Guttag J and Horning J (1993). Larch: languages
and tools for formal specification. Springer-Verlag.

Jones C B (1986). Systematic software devel opment
using VDM. Prentice-Hall.

Katrib M and Coira J (1995). Improving Eiffel
assertions using quantified iterators (draft).
Available: University of Havana,
<mkm@matcom.uh.co>

Leavens G (1997). An Overview of Larch/C++:
behavioral Specifications for C++ Modules.
Technical Report TR#96-01c, Department of
Computer Science, lowa State University.

McKim J (1996). Programming by contract -
designing for correctness. JOOP, 9(2).

Meyer B (1992). Eiffel. The language. Prentice
Hall.

Meyer, B (1994a). Beyond design by contract.
TOOLS Pacific '94 Keynote dides. ISE

Meyer B (1994b). Reusable software. The base
object-oriented component libraries. Prentice Hall.

Mitchell R and McKim J (1996). Design by
contract. TOOLS USA '96 Tutoridl. ISE

Mitchell R (1996). Software contracting using
deconstructors. Technica Report UBC 96/01.
University of Brighton.

Musser D. (1997) The Standard Template Library.
[Onling]. Available at:
http://www.cs.rpi.edu/~musser/stl.html

Mitchell, Howse and Hamie 10

